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Abstract. With the shrinking of transistor size and their own increasing
complexity, CPUs have become more fault-prone. The mercurial cores,
one type of processor failure, can randomly return silent miscomputa-
tion results and have been discovered in commercial CPUs. To address
the mercurial core problem, we propose BootRIST, a software-based so-
lution to detect and isolate mercurial cores in CPUs at the booting
stage. BootRIST provides a framework to execute the testing instruc-
tions and store the result for each CPU core. Based on the execution
result, BootRIST leverages the CPU hotplug mechanism to isolate mer-
curial cores. With BootRIST, the system and software can correctly run
on CPUs with mercurial cores. We have implemented a prototype of
BootRIST and deployed it on an Arm Linux server to perform an exten-
sive evaluation. The empirical studies demonstrate that BootRIST can
effectively detect and isolate mercurial cores at the booting stage.

1 Introduction

During the very-large-scale integration era, the increasing performance and the
decreasing cost of CPUs have made them widely used in servers and endpoint
devices. As the basic and essential component of computer systems, CPUs must
handle all computation requests and logic operations correctly. Since CPU man-
ufacturers already apply strict and sophisticated testing to CPUs, we naturally
think that the CPU is reliable; the system design and software development also
implicitly assume that the CPUs are fail-stop [26].

At the same time, the scale and complexity of CPUs constantly increases.
Dozens of cores are integrated into a single CPU, and several extensions, such as
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Single Instruction/Multiple Data (SIMD) and hardware encryption instructions,
are supported in modern CPUs. However, the shrinking hardware and complex
function increase the probability of physical flaws in processors [3, 4, 6, 21, 28].
Even in a normal environment without extreme radiation, the CPUs have become
more fault-prone than before. Google [11] and Facebook [7] have discovered that
some server CPUs can repeatedly produce random wrong results without any
error logs. Further investigation reveals that the errors typically occur on specific
cores on multi-core CPUs rather than the entire CPUs. Such cores are named
mercurial cores [11].

Although rough statistical analysis shows that the rate of mercurial cores is
relatively low (a few mercurial cores per several thousand machines) [30], the
large number of servers and cloud machines makes it impossible to ignore the
existence of mercurial cores. Moreover, current systems lack an efficient detection
and correction mechanism to handle mercurial core errors. Since the errors are
produced by CPU computations, the existing fault-tolerance mechanism in the
system (e.g., ECC in DRAM and RAID [5] in disk) cannot automatically correct
the corruption. Even worse, the undetected corruption can be propagated to
memory or files and further induce huge risks. For instance, broken configuration
data can cause applications to crash, or a corrupt secret key can cause encrypted
critical data to be permanently inaccessible. Consequently, there is an urgent
need to address the threats of mercurial cores for server systems. A solution
must not only detect mercurial cores effectively but also to keep these defective
machines in use to reduce the cost to the cloud service provider.

In this paper, we propose BootRIST, a software-based solution to perform
a Random Instruction Sequence Test at the Booting stage to detect mercu-
rial cores and isolate them to preserve the utility of the system. The design
principle of BootRIST is to propose a generic and automatic mercurial core
detection and isolation tool that can be widely applied to the existing Linux
system. Therefore, the design of BootRIST is based on the common features
of Linux and can be integrated into the Linux kernel without any hardware-
level modification. Furthermore, BootRIST provides an effective framework to
accelerate instruction testing. We slightly modify the Linux exception handler
to reduce the switching overhead when an instruction testing error occurs. The
modification to the kernel only affects the system at the booting stage, while it
introduces virtually no overhead to system runtime.

The execution flow of BootRIST contains three stages: instruction testing
stage, detection stage, and isolation stage. The instruction testing stage executes
a set of fault-prone instructions and records the execution result for all CPU
cores. During the detection stage, BootRIST detects mercurial cores based on
the execution result. Without requiring a correct default result to identify mer-
curial cores, BootRIST applies a voting algorithm to elect a base core. Finally,
for the cores with different results from the base core, BootRIST isolates them
from the operating system by using the CPU hotplug mechanism.

We implement a prototype BootRIST on openEuler 20.03 [12] with Linux
kernel 4.19.90. We deploy the prototype on TaiShan Server [13], an Arm archi-

2



tecture server with two Kunpeng 920 processors (a total of 96 cores). We first
measure the efficiency of instruction testing with different instruction workloads.
To further demonstrate the effectiveness of BootRIST, we inject the corruption
results to verify the detection function and evaluate the isolation time of mercu-
rial cores. We measure the system performance with a system-level benchmark
UnixBench and an application-level benchmark SPEC2017 to demonstrate the
overhead caused by BootRIST. The experimental results indicate that Boot-
RIST achieves efficient instruction testing and can detect and isolate mercurial
cores in the system. Furthermore, BootRIST only incurs negligible overhead
at the system runtime.

We consider the contributions of our work as follows:

– We propose BootRIST, a software-level solution to detect and isolate mer-
curial cores at the booting stage. This solution does not need to modify the
hardware, which can be widely deployed on the existing system.

– We design an efficient instruction testing framework to accelerate the execu-
tion of instructions. The framework improves the testing performance and
reduces the testing time.

– We implement the BootRIST on an Arm architecture server and evaluate
the efficiency and effectiveness of the BootRIST prototype. We also eval-
uate the BootRIST-enabled system on UnixBench and SPEC2017, and
demonstrate that the BootRIST introduces virtually no overhead to the
system runtime.

2 Preliminaries

2.1 What is Mercurial Core?

The concept of mercurial cores was initially introduced by Google [11] to describe
the intermittent and undetectable miscomputations that occur on certain CPUs.
Similar errors on CPUs have also been reported by Facebook [7] and Alibaba
Cloud [30]. These errors manifest themselves in processor cores following seem-
ingly innocuous changes in low-level software libraries, such as the utilization of
faster but rarely-used instructions to enhance computational performance.

Further investigation shows that mercurial cores behave normally in most
cases, while they return corrupt execution errors in some occasional and unpre-
dictable conditions. Currently, the detection of mercurial cores mainly relies on
manual reports, while the automatic machine check is less powerful. Without
the immediate detection and correction of error results, mercurial cores may ex-
pose the computation data to large corruption risks. Researchers speculate that
one fundamental reason for the occurrence of mercurial cores is the shrinking of
CMOS scaling [24]. As the size of silicon decreases, it approaches physical limita-
tions, thereby increasing the risk of latent failures. Another contributing factor
is the growing complexity of processor architecture. The extensive integration of
cores within a single CPU and the complex extension of instructions also elevate
the risk of mercurial cores.
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Solving the mercurial core problems necessitates collaborative efforts from
both CPU manufacturers and server vendors. The CPU vendors are responsible
for improving manufacturing testing or using the hardware-assisted way to re-
duce the rate of mercurial cores. As for the server vendors, they should apply the
necessary fault-tolerance mechanism or isolation scheme to avoid the potential
mercurial core corrupting user data. Existing solutions mainly add redundancy
from both hardware and software layers to avoid its impact on the system [9,19].
In this paper, BootRIST provides a software-based isolation scheme for server
vendors to preserve the normal function of machines with mercurial cores.

UEFI

GPT

GRUB

Kernel

Init Start Services

Hardware Checking

Execute GRUB

Select Linux Kernel Image

Kernel Initialization
Execute /sbin/init

➀

➁

➂
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Fig. 1: The booting process of Linux.

2.2 Linux Booting Process

The entire booting process of the Linux system typically contains six steps af-
ter the power-up. First, the Unified Extensible Firmware Interface (UEFI) ( 1○)
performs the system hardware integrity check and initializes the hardware com-
ponents. After the check, the BIOS executes and hands over the control to the
boot loader in GUID Partition Table (GPT) ( 2○). The MBR or GPT contains
information about GRand Unified Bootloader (GRUB), which is loaded and ex-
ecuted in the next steps. Then the GRUB ( 3○) allows the user to select one
installed Linux kernel image as the boot image or directly use the default one
according to the GRUB configuration file. In addition to the kernel image, the
GRUB also loads and executes the initial RAM disk (initrd) images, which
contain the necessary executables and system files to support the Linux system.
Next, the Linux kernel image is executed to initialize the necessary kernel set-
tings ( 4○), such as CPU, MMU, and interrupt. Finally, according to the root
file system provided by initrd, the Linux kernel executes the first program
– /sbin/init ( 5○) to start the services. Based on the booting process, Boot-
RIST is executed during the kernel initialization stage ( 4○) to detect and isolate
mercurial core.
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2.3 CPU State and Hotplug in Linux Kernel

For reliability, availability, and serviceability (RAS), the Linux kernel provides
the CPU hotplug mechanism to allow the system dynamically plug or unplug
CPU cores. The Linux kernel maintains the following four bitmaps to manage
all CPU core states.

– possible: The CPUs are defined in the Device Tree Source (DTS) and can be
plugged into the system.

– present : The CPUs that are plugged.
– online: The CPUs that are available for scheduling.
– active: The CPUs that are available for receiving task migration.

The four aforementioned states are initially set to true by default to enable
all CPU cores. However, when unplugging a CPU core from the system, the
Linux kernel follows a specific process. Firstly, it migrates all running tasks and
IRQs away from the core being unplugged. Subsequently, the Linux kernel sets
the states of present, online, and active to false for the unplugged CPU core,
preventing any new tasks from being scheduled or assigned to that core. In this
paper, BootRIST remove mercurial cores to preserve the system functionality
by leveraging the Linux CPU hotplug mechanism.

2.4 SIGILL in Linux System

SIGILL, a special signal in the Linux kernel, is typically triggered when processors
execute an undefined instruction in user-mode. By default, when a program
encounters the SIGILL signal, it is interrupted and crashes. However, it is possible
for the program to avoid crashing by registering a SIGILL handler, which allows
for handling the SIGILL signal in a customized manner. In this paper, we make
use of the undefined instruction and the SIGILL handler to interrupt the test
program and perform necessary operations during testing.

3 Fault Model and Assumptions

We consider a conservative fault model for transient hardware faults on CPU
core. The mercurial core behaves as normal in most cases, while it can intro-
duce silent corruption when executing specific types of instructions [11], such
as floating-point instructions, vector instructions, and SIMD instructions. This
silent corruption can lead to incorrect results being returned to registers or mem-
ory, thereby compromising the reliability of system.

To mitigate the impact of corruption on system runtime, BootRIST aims to
detect and isolate the failure by testing fault-prone instructions at the booting
stage. We assume that the server provider utilizes a fault-prone instruction set,
allowing BootRIST to repeatedly execute a series of random instructions from
this set during the booting stage to detect mercurial cores. Similar to existing
research on processor failure detection [16, 17, 25], we do not consider faults in
the memory subsystem and assume that it is protected by ECC.
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4 Design

4.1 System Overview

As illustrated in Figure 2, BootRIST is integrated into Linux kernel and exe-
cuted during the initialization of Linux kernel. Without affecting the high-level
applications, BootRIST finishes the detection and isolation of mercurial cores
before starting system services. The execution flow of BootRIST is split into
three steps: 1○ Instruction Testing, 2○ Mercurial Core Detection, and 3○ Mercu-
rial Core Isolation. BootRIST first performs Instruction Testing ( 1○) to execute
a series of fault-prone test instructions on all CPU cores, storing the execution
result of each CPU core. For the Mercurial Core Detection ( 2○), BootRIST
compares the execution result core-by-core and utilizes a voting algorithm to
find mercurial cores based on the comparison. When step 2○ detects the exis-
tence of mercurial cores, BootRIST further isolates them from normal cores to
avoid unpredictable fault (i.e., 3○ Mercurial Core Isolation).

4.2 Instruction Testing

The design of the instruction testing framework is based on risu [18], a tool used
to find inconsistencies between simulators and real machines. risu can generate
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a test binary that contains a sequence of instructions that randomly selected
from the instruction set. Moreover, risu provides a framework for executing the
test binary and comparing the resulting execution outputs. Based on the design
principle of risu, BootRIST leverages the risu to detect the mercurial core in
processor. In this part, we first introduce the workflow of risu. Then we describe
how to optimize the workflow to improve test efficiency.

4.2.1 risu Workflow To achieve the test, risu provides a test program to
collaborate with the generated test binary. Note that the test binary is not
a single executable file, while it requires to be loaded by a test program and
executed as a function. As illustrated in Figure 3, we elaborate on important
components in the test binary and test program. The test program contains an
executable memory to execute the test binary and a SIGILL handler to support
the dedicated operations and tackle unintentional errors. As for the test binary,
it contains the following parts:

– Memory Block: A continuous memory region that is used to load and store
memory data.

– Register Initialization: Initialize all general purpose registers and vector
registers with pre-defined values.

– Test Instruction: The randomly generated arithmetic instructions accord-
ing to the given instruction set.

– Illegal Instruction: The instructions that are intentionally inserted by
risu to interrupt the execution and enter the SIGILL handler. Based on
the type of illegal instruction, the handler can perform the following differ-
ent operations: records the address of the memory block, obtains the load
or store address in the memory block, or saves the value of registers and the
memory block. After completing one of the above operations, the handler
skips the illegal instructions and continues executing the binary.

In the beginning, the binary contains the first illegal instruction ( 1○), which
notifies the SIGILL handler to record the base address of the memory block.
Following that, the binary executes a branch instruction and proceeds to the
register initialization phase where all general purpose registers and vector regis-
ters are set. After the initialization, the binary proceeds to execute all test cases
until reaching the end.

Each test case comprises memory load/store instructions, test instructions,
and illegal instructions. Before accessing the memory, the binary first stores
the offset of the memory block in x0 register and executes a dedicated illegal in-
struction ( 3○). Based on the given offset and the recorded address of the memory
block, the SIGILL handler calculates the absolute address, which is then stored
in the x0 register as the target memory address for the subsequent load/store
instructions ( 4○). The test instructions ( 5○) are executed with the input given
by the load/store instructions. After executing the test instructions, the test
case reaches the final illegal instructions and notifies the SIGILL handler to save
execution results in registers and the memory block ( 6○).
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Fig. 4: The workflow comparison of the native SIGILL handler and the optimized
illegal instructions handler.

4.2.2 Compress Execution Result During the Instruction Testing, Boot-
RIST requires executing a series of test instructions and storing the execution
result for each test case. However, directly storing the execution result of all
test cases can lead to significant memory consumption. To mitigate this issue,
a scheme is devised to reduce memory usage. One possible solution is to exe-
cute the program in parallel on each CPU core and compare the results of each
test case simultaneously. However, this approach requires strict parallel execu-
tion and synchronization among all CPU cores, which can introduce substantial
slowdowns to the test progress and reduce the test efficiency.

To tackle these challenges, BootRIST utilizes a hash compression algorithm
to reduce memory consumption in storing execution results. The approach in-
volves allocating a dedicated memory region of identical size to the memory block
and CPU registers for each CPU core within the Linux kernel. At the beginning
of the test program, BootRIST initializes the hash state of the allocated mem-
ory. When the SIGILL handler receives the request to save the execution result,
BootRIST employs a message digest algorithm to update the hash state based
on the current state, as well as the values stored in the registers and memory
block. After executing all test cases, the hash states in the reserved memory
regions are used to identify any inconsistencies in execution. As a result, Boot-
RIST effectively reduces the memory required to store the execution results
while ensuring the discrimination of mercurial core.

4.2.3 Optimize the SIGILL Handler In risu, the SIGILL handler is used to
perform the specific operations base on the type of illegal instruction. However,
the test program’s frequent interactions with the SIGILL handler can introduce
additional complexity and result in a slowdown during testing. To address this
issue, we aim to design an efficient illegal instruction handler that improves
test performance by reducing the overhead associated with entering the SIGILL
handler.

To optimize the test performance, we begin by examining the workflow that
utilizes the SIGILL handler to handle the illegal instructions. As illustrated on
the top side of Figure 4, once the program executes an illegal instruction ( 1○), the
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Fig. 5: Voting algorithm for mercurial core detection.

CPU generates an exception and traps the system into Linux exception handler.
The exception handler stores the program context, and sends the SIGILL signal
with the saved context registers to the program SIGILL handler ( 2○). With the
given context registers values, the SIGILL handler can identify the type of illegal
instruction and perform corresponding operations ( 3○). Once the SIGILL signal
is handled appropriately, the handler returns to the kernel space. Subsequently,
the kernel restores the program’s state and resumes its execution ( 4○). However,
the complex Linux signal mechanism and frequent switch between the user space
and kernel space can significantly slow down the test procedure. To address this,
we improve the test performance by replacing the SIGILL handler with a efficient
illegal instruction handler.

As shown in the bottom side of Figure 4, we integrate the necessary risu op-
erations into the Linux exception handler. For the illegal instruction that comes
from BootRIST test, the exception handler directly performs the operations
base on the type of illegal instruction. After finishing the operation, the ex-
ception handler skips the illegal instruction and resumes the program execution
without sending the SIGILL signal to the program. Note that the modification of
exception only affects the SIGILL raised by BootRIST, while the SIGILL from
other programs works as normal. Consequently, BootRIST reduces the redun-
dant context switch and eliminates the heavy signal mechanism, which improves
the test performance and can find the mercurial core efficiently.

4.3 Mercurial Core Detection

To detect mercurial cores, a straightforward approach is to compare the execu-
tion results with pre-calculated correct results. However, this method requires
executing tests on a fault-free machine to obtain accurate reference results, which
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adds extra effort. Considering that the occurrence rate of mercurial cores is typ-
ically low, it implies that the majority of cores will produce correct results.
Exploiting this observation, we can employ a voting algorithm to identify the
mercurial core without the need for additional pre-calculation efforts. By com-
paring the execution results core-by-core, the voting algorithm determines the
cores that deviate from the expected outcome and identifies them as mercurial
cores. This approach allows for efficient mercurial core detection without relying
on pre-calculated results.

Figure 5 illustrates the process of the voting algorithm. We label the cores
from 1 to n and apply the voting algorithm n

2 rounds, where n is the number
of processor cores. During round i, we compare the result of core i with all
other cores. The vote of core i is counted by the number of the same execution
results compared with core i. For the first core with more than n

2 votes, Boot-
RIST marks it as the base core and regards its execution result as reliable.
Then the cores with different results from the base core are marked as mercurial
cores, which will be isolated in the later stage. Note that the algorithm proceeds
at most n

2 rounds since the base core cannot exist in the last n
2 cores. If no

core can obtain more than n
2 votes, we regard the result is contaminated by

unexpected factors, such as the unintentional modification to the memory from
other program, because the rate of mercurial cores is typically low. In this case,
BootRIST cleans all recorded results and executes the Instruction Testing and
Mercurial Core Detection again to find mercurial cores.

4.4 Mercurial Core Isolation

The Mercurial Core Isolation is executed only if the detection result indicates
the existence of mercurial cores. BootRIST leverages the CPU hotplug mech-
anism to isolate mercurial core. More specifically, BootRIST first migrates all
the running tasks and IRQ in mercurial cores to other normal cores. After the
migration, we change the present, online, and active state to false, disabling
mercurial cores. As a result, any tasks can not be assigned to the unplugged
mercurial core by scheduling or task binding.

5 Implementation

Section 4 focuses on the design principle of the BootRIST. In this section, we
further demonstrate the necessary implementation details of our design.

5.1 Instruction Generation

To detect Mercurial cores, we need to generate error-prone instruction test cases.
In AArch64 execution mode, ARMv8 runs the A64 instruction set. A64 instruc-
tion set consists of 32-bit fixed-length encoded instructions and uses 64-bit ad-
dressing mode. Each instruction encoding includes bits for Opcode, Condition
Code, Immediate, Register, Shift Operation, etc. For a specific instruction, some
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Fig. 6: Mercurial core isolation.

bits, like the Opcode, are fixed, while others, such as register and immediate
values, are variable. The Risu tool provides us with instruction templates for
the A64 instruction set, detailing the encoding format and value constraints for
the variable fields of each instruction. By parsing these templates, we can select
the types and numbers of instructions we want to test and generate multiple
different legal instructions based on the constraints for testing.

5.2 Parallel Execution

To improve the test performance, we implement the Instruction Testing with par-
allel execution on each CPU core. During the kernel initialization, BootRIST
first leverages the kernel function call_usermodehelper() to execute the testing
program. Then we duplicate the program process n times through leveraging the
fork() function, where n is the number of CPU cores. For each forked process,
we utilize the sched_setaffinity() function to bind it to different processor cores.
Consequently, the test procedure can be parallel executed on all CPU cores.

5.3 Modification to Exception Handler

As mentioned in Section 4.2.3, we integrate the illegal instruction handler into
Linux exception handlers to improve the test performance. Therefore, we modify
the kernel exception handler do_undefinstr() to handle the intentionally inserted
illegal instruction and process the dedicated operations, such as recording ex-
ecution results and obtaining the memory block address. Note that we only
migrate the illegal instruction handler part into kernel exception handlers, while
the SIGILL handler is still preserved to tackle the rare unintentional execution
error.

5.4 Mecurial Core Isolation

BootRIST achieves core isolation by leveraging the CPU hotplug mechanism
in Linux kernel. Figure 6 presents an example of mercurial core detection result
and illustrates how to isolate mercurial cores in detail. From the figure, we can
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see that core 0 is the base core, while core 1 and core i are mercurial cores
as their execution results are different from the base result. BootRIST first
utilizes the function cpu_down() to migrate the running task and IRQ from
mercurial cores to normal cores. Then we switch the present, online, and active
state to false to further remove the core from the scheduling list and unplug
the core from the system. The switch of core states is achieved by employing
Linux kernel APIs set_cpu_online(), set_cpu_active() and set_cpu_present().
Consequently, BootRIST can isolate mercurial cores from the normal cores and
preserve the system’s functionality.

6 Evaluation

In this section, we detail the performance evaluation of BootRIST. First, our
evaluation environment is introduced in Section 6.1. In Section 6.2, we demon-
strate the category of testing instructions and the testing performance of our
framework. Furthermore, we measure the time consumption of mercurial core
isolation in Section 6.3. Finally, we evaluate the system performance overhead
caused by the deployment of the BootRIST in Section 6.4.

6.1 Evaluation Environment

We select Huawei TaiShan 200 (Model 2280) Server [13] as our experimental
platform. The platform has two HiSilicon Kunpeng 920-4826 CPUs [10] with a
total of 96 ARMv8-A cores. Moreover, it equips 382 GB of DDR4 memory and
2.1TB of hard drive storage. To record the execution result, we reserve 8,192
bytes and 1,024 bytes memory to store the hash state of the memory block and
register values for each CPU core (i.e., 0.75 MB and 96 KB in total), respectively.
We prototype BootRIST based on Linux kernel 4.19.90 running in openEuler
20.03 [12].

6.2 Performance of Instruction Testing

We leverage risu [18] to randomly generate a various number of test instruc-
tions from the Arm instruction set [1, 2] to demonstrate the test performance.
As previous work suggests that mercurial cores are more likely to be observed
when executing complex instructions [11, 27] (e.g., vector operations, floating-
point instructions), we use such instructions as a fault-prone instruction set to
generate test binary. More specifically, the test binary contains the floating-point
operations instructions, Single Instruction/Multiple Data (SIMD), and Scalable
Vector Extension (SVE) instructions.

To demonstrate the test performance, we evaluate the performance of Boot-
RIST with a different number of test instructions and compare the execution
time between BootRIST and different experiment settings in Table 1. The col-
umn Instructions demonstrates the number of test instructions generated by
the risu [18]. The column BootRIST and risu demonstrate the performance
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Table 1: Comparison of instruction test time (seconds) and its percentage in
total booting time.

Instructions BootRIST risu [18]
Test Time Percentage Test Time Percentage

10 0.01 0.01% 0.01 0.01%
100 0.02 0.01% 0.03 0.02%

1000 0.18 0.11% 0.23 0.14%
10000 1.86 1.13% 2.31 1.40%

100000 18.78 10.34% 23.10 12.42%
500000 93.75 36.53% 115.36 41.46%

of instruction testing on BootRIST and native risu, respectively. Note that
BootRIST leverages the exception handler to handle the illegal instruction,
while risu uses the SIGILL handler. As shown in the table, the comparison be-
tween BootRIST and SIGILL demonstrates that our efficient illegal instruction
handler achieves approximately 20% acceleration to the instruction testing. The
experimental results show that BootRIST provides an efficient instruction test
framework. Furthermore, we measure the time consumption of the booting pro-
cess and evaluate the percentage of test time in total booting time. The native
Linux system takes 162.87 (s) to boot. And the Percentage columns in the Ta-
ble 1 show that BootRIST does not severely increase the booting time. Since
the reboot in server systems is infrequent, the instruction testing at the booting
stage would not significantly affect high-level users.

6.3 Mercurial Core Detection and Isolation

To demonstrate the effectiveness of BootRIST, we further evaluate the de-
tection and isolation of mercurial cores. We manually emulate mercurial cores
by injecting faults into the execution result. For the broken execution results,
BootRIST regards the corresponding cores as mercurial cores and isolates them
from other cores.

We further evaluate the time consumption caused by isolating a various num-
ber of mercurial cores. Recall from Section 4.3 that our voting algorithm rejects
the discrimination result if the number of mercurial cores is equal to or greater
than half of the total number of cores. Since our experimental platform equips
with 96 cores, we evaluate the isolation time for no more than 47 mercurial
cores and present the result in Figure 7. The figure shows that the isolation time
almost increases linearly with the increasing number of cores. Moreover, the iso-
lation time is less than 2 seconds even if we isolate 47 cores, demonstrating that
our mercurial core isolation scheme is efficient.
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6.4 System Performance Analysis

We further evaluate the impact of BootRIST with system-level and application-
level benchmarks to demonstrate that the deployment of BootRIST incurs
virtually no overhead to the system runtime.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Dhry
sto

ne

Whets
ton

e

Exce
l T

hro
ug

hpu
t

File 
Copy(

1KB)

File 
Copy(

256
B)

File 
Copy(

4KB)

Pipe T
hrou

ghp
ut

Con
tex

t S
witch

ing

Proc
es

s C
reatio

n

She
ll S

crip
ts(

1 th
read

)

She
ll S

crip
ts(

8 th
read

s)

Syst
em Call

Total

N
or

m
al

iz
ed

 O
ve

rh
ea

d

 Original Linux
 BootRIST Enabled

Fig. 8: The performance overhead of BootRIST on UnixBench.

UnixBench [15]: UnixBench is a benchmark tool to evaluate the perfor-
mance of a Unix-like system. To demonstrate the performance overhead of Boot-
RIST on the system, we perform UnixBench to evaluate the affection to critical
system operations. Figure 8 illustrates the comparative evaluation of Boot-
RIST relative to the native Linux system on UnixBench. The white column
and red column represent the Linux system with native settings and the Linux
system with BootRIST, respectively. As shown in Figure 8, the deployment of
BootRIST does not incur significant overhead on all test items. The largest
overhead occurs in the System Call item because all system calls execute the
svc instruction and enter the exception handler in Arm Linux. The modification
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of the exception handler incurs such overhead, which can be futher reduced by
optimizing the BootRIST code added in the exception handler. Nevertheless,
the total overhead indicates that BootRIST only incurs negligible overhead.
The experiment results demonstrate that BootRIST incurs almost no impact
on the system runtime.
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Fig. 9: The performance overhead of BootRIST on SPEC2017.

SPEC_CPU 2017 [29]: SPEC_CPU 2017 benchmark package provides
testing suites to measure the performance of compute-intensive real user ap-
plications. Therefore, we further employ SPEC_CPU 2017 to evaluate the im-
pact of BootRIST on the user application performance. We evaluate all of
SPEC_CPU 2017 INT and FP applications and present the result in Figure 9.
As illustrated in Figure 9, the performance of BootRIST and original Linux
system are almost same, and only present some minor fluctuations on differ-
ent user applications. Moreover, the average performance overhead shows that
BootRIST introduces virtually no overhead on the user application.

7 Discussion and Future Work

The design principle of BootRIST is to provide an automatic mercurial core
detection framework. We achieve the automatic testing and detection at the
booting stage with pre-generated instruction binary, which contains a series of
fault-prone instructions. However, we consider that the fault-prone instruction
coverage may not be enough to discover mercurial cores. The two aspects mainly
cause insufficient coverage. The first aspect is the limitation of testing time. Since
BootRIST is running at the booting stage, the testing time cannot occupy the
booting process too long to affect the normal usage of the system. The second
aspect is the incomplete summary of the fault-prone instruction set. We assume
that the server provider already knows the fault-prone instruction set. With such
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a set, the mercurial cores can be detected even if the reboot is infrequently and
the booting time is short. However, the investigation of the fault-prone instruc-
tion set relies on manual bug reports [11], which is less efficient and is hard
to discover all fault-prone instructions. Therefore, we consider future work can
improve the fault-prone instruction coverage by prolonging the testing time or
designing an automatic way to complete the fault-prone instruction set. For in-
stance, BootRIST can integrate with an online instruction generator to achieve
an online test and leverage fuzzing technologies to guide the discovery of fault-
prone instructions.

8 Related Work

8.1 Processor Failure

The previous studies have proposed some schemes to detect unexpected pro-
cessor failure. Farron [30]is the first work to observe and characterize SDC on
large-scale server clusters. Nostradamus [20] employs extra hardware to over-
come the computation errors in out-of-order processor cores. It predicts the
expected result of instruction, and corrects the output if a failure occurs. Be-
sides the hardware solution, some works [16, 17, 22, 25] design a software-level
redundancy scheme to overcome the soft-error. They modify the compiler to
leverage the unused instruction-level resources to add redundancy. SiliFuzz [27]
leverages fuzzing technology to detect potential mercurial cores. They use the
known bad machines to guide the test generator and create fault-prone test
cases. OpenDCDiag [23] is an open-source framework to find defects and bugs
in CPUs. OpenDCDiag requires user manually writing test code and providing
pre-calculated golden result. The CPUs failure is detected by comparing the ex-
ecution result with the golden result. Intel In-Field-Scan can run circuit level
test on a CPU core to detect processor failures. However, it only supports on a
part of upcoming Xeon Sapphire Rapids processor, which means it can not be
applied to other Intel CPUs or other manufacturers’ CPUs (such as AMD and
Arm).

8.2 Discover Inconsistent Execution

Several works are proposed to discover inconsistent execution to improve relia-
bility. iScanU [8] aims to find undocumented instructions on RISC processors.
It executes a single instruction and determines whether it is an undocumented
instruction based on whether the SIGLL signal is triggered. EXAMINER [14]
focuses on finding the inconsistent execution between simulators and real ma-
chines. It leverages the Arm architecture specification language (ASL) to gener-
ate representative instruction streams to find inconsistent instruction efficiently.
risu [18] is an open-source random user-space instruction generator intended
to test the implementation of simulators of Arm architecture. In BootRIST,
we leverage the risu to randomly generate test instructions on a fault-prone
instruction set and find the inconsistent execution between CPU cores to detect
mercurial cores.
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9 Conclusions

With the shrinking of transistor size and their own increasing complexity, CPUs
have become more fault-prone. Recently, the mercurial cores, which are caused
by permanent hardware faults and may return the corrupt result, have been dis-
covered in modern CPUs. The existence of mercurial cores brings a huge data risk
to the system and can severely affect the system’s functionality. Therefore, we
propose BootRIST, a software-based solution to detect and isolate mercurial
cores at the booting stage, and can be integrated into the existing system. We
design an efficient instruction testing framework to improve the testing pressure
and reduce the testing time. Furthermore, without requiring the default correct
execution result, we design a voting algorithm to identify the possible mercurial
core. Moreover, BootRIST fully leverages the Linux CPU hotplug mechanism
provided to isolate mercurial cores from normal cores. Based on the design, we
implement a prototype BootRIST on a server, as well as perform the experi-
mental studies. The experiment results demonstrate that BootRIST achieves
efficient instruction testing and effective mercurial core detection and isolation
on the system. Furthermore, our evaluation demonstrates that the deployment
of BootRIST only incurs virtually no overhead to the system.
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