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Mercurial Core

2

Mercurial core:

• The CPU core with failures
• Explicit faults causing program 

crashes or exceptions
• Data errors introduced without 

explicit error reports

1. https://www.sigarch.org/wp-content/uploads/2022/08/error-decection-latencies-scaled.jpg

Silent data corruptions1



Mercurial Core
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Google and Meta have discovered that some server CPUs 
can repeatedly produce random wrong results without any 
error logs

• Low occurrence frequency
• Difficult to debug
• High prevalence

• Common in complex computation 
instructions

Silent data corruptions1

1. https://www.sigarch.org/wp-content/uploads/2022/08/error-decection-latencies-scaled.jpg



What harm might it cause?
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• Google[1]: 
• Garbage collection module failure
• Kernel state corruption

• Meta[2]:
• File metadata calculation error lead 

to file loss

• Ali Cloud[3]:
• Wrong verification calculation 

results caused the requested data to 
be frequently mistaken for damage.

Meta Mercurial Core Example[2]



BootRIST
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Objective: Efficient, low-overhead and generic tool for mercurial 
core detection and isolation.

• Software-based solution
• High efficiency
• High portability



Design of BootRIST
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Objective: Efficient, low-overhead and generic tool for mercurial 
core detection and isolation

• Instruction consistency testing
• Mercurial cores detection based on voting algorithm
• Mercurial cores isolation based on cpu hotplug



Design of BootRIST
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BootRIST executes during the Linux 
kernel boot stage

• Between step 4 and step 5
• Avoid affecting high-level 

applications 

Linux Kernel Booting Process



Instruction Testing
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Test program:
• Load the risu1 test binary

• Handle dedicated SIGILL events in 
test binary

risu test binary:
• Memory Blocks

• Maintain the memory data for 
memory load/store operations

• Registers initialization
• Test Instructions

• Illegal Instruction
• Assist with memory access 

operations and execution result 
saving opreations Instruction testing process

1. https://github.com/Xaltotun/risu



Instruction Testing
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Workflow:
• Initialize registers

• Execute test cases
• Load/Store data into memory block
• Run test instruction
• Save execution result

• Stop after completing all test cases

Instruction testing process



Optimize SIGILL Handler
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Frequent illegal instruction causes large overhead
• Multiple context switches when entering and exiting the SIGILL handler

Optimization
• Reduce the number of context switch to improve performance



Mercurial Core Detection
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• Based on voting algorithm
• Up to n/2 round, algorithm 

complexity is controllable



Mercurial Core Isolation
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Based on Linux CPU hotplug
mechanism, clear the online, active, 
and present state for mercurial cores.
• Present: The core is plugged
• Online: The core is available for 

scheduling
• Active: The core is available for 

task migration



Experiments Setup
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Platform: Huawei Taishan 2280 server (Kunpeng 920 processor, ARMv8 
architecture, 96 cores)

Operating System: EulerOS 20.03, Linux kernel 4.19.90

Software Configuration: Each core is allocated 8192 bytes for memory 
results and 1024 bytes for register results. 



BootRIST Performance
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Performance improvements after optimizing SIGILL handler:
• 20% improvement compared to risu

The average server startup time is approximately 162.87 seconds



Performance of Instruction Testing
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Due to voting algorithm, the number of simulated mercurial cores 
cannot exceed half of the total number



System Overall Overhead
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Unixbench: A benchmark for evaluating kernel mode 
performance on Unix-like systems

• Maximum overhead: ~5.17%
• Average overhead: ~0.419%



System Overall Overhead
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SPEC_CPU 2017: compute-intensive test cases for evaluating user-
mode performance

• Maximum overhead: ~0.89%



Conclusion

18

BootRIST: a software based solution to detect and isolate 
mercurial cores at the booting stage

• Efficient instruction testing framework
• Low system overhead
• High portability



Thanks for listening!

Q & A
COMPASS Lab: zhangfw@sustech.edu.cn
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