
Yihao Luo1,*, Yunjie Deng1,*, Jingquan Ge3, 

Zhenyu Ning2, Fengwei Zhang1,

1 Southern University of Science and Technology,

2 Hunan University, 3 Nanyang Technological University

BooTRIST: Detecting and Isolating Mercurial Cores at the 
Booting Stage



Mercurial Core

2

Mercurial core:

• The CPU core with failures
• Explicit faults causing program 

crashes or exceptions
• Data errors introduced without 

explicit error reports

1. https://www.sigarch.org/wp-content/uploads/2022/08/error-decection-latencies-scaled.jpg

Silent data corruptions1



Mercurial Core

3

Google and Meta have discovered that some server CPUs 
can repeatedly produce random wrong results without any 
error logs

• Low occurrence frequency
• Difficult to debug
• High prevalence

• Common in complex computation 
instructions

Silent data corruptions1

1. https://www.sigarch.org/wp-content/uploads/2022/08/error-decection-latencies-scaled.jpg



What harm might it cause?

4

• Google[1]: 
• Garbage collection module failure
• Kernel state corruption

• Meta[2]:
• File metadata calculation error lead 

to file loss

• Ali Cloud[3]:
• Wrong verification calculation 

results caused the requested data to 
be frequently mistaken for damage.

Meta Mercurial Core Example[2]



BootRIST

5

Objective: Efficient, low-overhead and generic tool for mercurial 
core detection and isolation.

• Software-based solution
• High efficiency
• High portability



Design of BootRIST

6

Objective: Efficient, low-overhead and generic tool for mercurial 
core detection and isolation

• Instruction consistency testing
• Mercurial cores detection based on voting algorithm
• Mercurial cores isolation based on cpu hotplug



Design of BootRIST

7

BootRIST executes during the Linux 
kernel boot stage

• Between step 4 and step 5
• Avoid affecting high-level 

applications 

Linux Kernel Booting Process



Instruction Testing

8

Test program:
• Load the risu1 test binary

• Handle dedicated SIGILL events in 
test binary

risu test binary:
• Memory Blocks

• Maintain the memory data for 
memory load/store operations

• Registers initialization
• Test Instructions

• Illegal Instruction
• Assist with memory access 

operations and execution result 
saving opreations Instruction testing process

1. https://github.com/Xaltotun/risu



Instruction Testing

9

Workflow:
• Initialize registers

• Execute test cases
• Load/Store data into memory block
• Run test instruction
• Save execution result

• Stop after completing all test cases

Instruction testing process



Optimize SIGILL Handler

10

Frequent illegal instruction causes large overhead
• Multiple context switches when entering and exiting the SIGILL handler

Optimization
• Reduce the number of context switch to improve performance



Mercurial Core Detection

11

• Based on voting algorithm
• Up to n/2 round, algorithm 

complexity is controllable



Mercurial Core Isolation

12

Based on Linux CPU hotplug
mechanism, clear the online, active, 
and present state for mercurial cores.
• Present: The core is plugged
• Online: The core is available for 

scheduling
• Active: The core is available for 

task migration



Experiments Setup

13

Platform: Huawei Taishan 2280 server (Kunpeng 920 processor, ARMv8 
architecture, 96 cores)

Operating System: EulerOS 20.03, Linux kernel 4.19.90

Software Configuration: Each core is allocated 8192 bytes for memory 
results and 1024 bytes for register results. 



BootRIST Performance

14

Performance improvements after optimizing SIGILL handler:
• 20% improvement compared to risu

The average server startup time is approximately 162.87 seconds



Performance of Instruction Testing

15

Due to voting algorithm, the number of simulated mercurial cores 
cannot exceed half of the total number



System Overall Overhead

16

Unixbench: A benchmark for evaluating kernel mode 
performance on Unix-like systems

• Maximum overhead: ~5.17%
• Average overhead: ~0.419%



System Overall Overhead

17

SPEC_CPU 2017: compute-intensive test cases for evaluating user-
mode performance

• Maximum overhead: ~0.89%



Conclusion

18

BootRIST: a software based solution to detect and isolate 
mercurial cores at the booting stage

• Efficient instruction testing framework
• Low system overhead
• High portability



Thanks for listening!

Q & A
COMPASS Lab: zhangfw@sustech.edu.cn

19



References

20

1. Hochschild, Peter H., et al. "Cores that don't count." Proceedings of the Workshop 
on Hot Topics in Operating Systems. 2021.

2. Dixit, Harish Dattatraya, et al. "Detecting silent data corruptions in the wild." arXiv
preprint arXiv:2203.08989 (2022).

3. Wang, Shaobu, et al. "Understanding Silent Data Corruptions in a Large Production 
CPU Population." Proceedings of the 29th Symposium on Operating Systems 
Principles. 2023.


	Slide 1
	Slide 2: Mercurial Core
	Slide 3: Mercurial Core
	Slide 4: What harm might it cause?
	Slide 5: BootRIST
	Slide 6: Design of BootRIST
	Slide 7: Design of BootRIST
	Slide 8: Instruction Testing
	Slide 9: Instruction Testing
	Slide 10: Optimize SIGILL Handler
	Slide 11: Mercurial Core Detection
	Slide 12: Mercurial Core Isolation
	Slide 13: Experiments Setup
	Slide 14: BootRIST Performance
	Slide 15: Performance of Instruction Testing
	Slide 16: System Overall Overhead
	Slide 17: System Overall Overhead
	Slide 18: Conclusion
	Slide 19
	Slide 20: References

