
Breaking BLE Beacons For Fun But Mostly Profit

Constantinos Kolias
George Mason University

kkolias@gmu.edu

Lucas Copi
Wayne State University

lucas.copi@wayne.edu

Fengwei Zhang
Wayne State University

fengwei@wayne.edu
Angelos Stavrou

George Mason University
astavrou@gmu.edu

ABSTRACT
Bluetooth Low Energy (BLE) Beacons introduced a novel
technology that enables devices to advertise their presence
in an area by constantly broadcasting a static unique iden-
tifier. The aim was to enhance services with location and
context awareness. Although the hardware components of
typical BLE Beacons systems are able to support adequate
cryptography, the design and implementation of most pub-
licly available BLE Beacon protocols appears to render them
vulnerable to a plethora of attacks. Indeed, in this paper,
we were able to perform user tracking, user behavior mon-
itoring, spoofing as well as denial of service (DoS) of many
supported services. Our aim is to show that these attacks
stem from design flaws of the underlying protocols and as-
sumptions made for the BLE beacons protocols. Using a
clearly defined threat model, we provide a formal analysis of
the adversarial capabilities and requirements and the attack
impact on security and privacy for the end-user. Contrary
to popular belief, BLE technology can be exploited even by
low-skilled adversaries leading to exposure of user informa-
tion. To demonstrate our attacks in practice, we selected
Apple’s iBeacon technology, as a case study. However, our
analysis can be easily generalized to other BLE Beacon tech-
nologies.

1. INTRODUCTION
BLE Beacons and related technologies have recently stirred

the attention of smartphone vendors and application devel-
opers, primarily owed to their high quality object identifica-
tion and proximity estimation features and their potential
for location based services. In fact, BLE Beacons are the
building block of the Physical Web [13], Google’s own vision
for the Web of Things [22].

BLE beacon technologies are based on the BLE [6] wireless
communication protocol and more specifically its advertis-
ing mechanism that relies on the constant broadcasting of
packets. BLE Beacon systems are typically comprised by
two main components:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

Copyright 2017 ACM 978-1-4503-4935-2/17/04 ...$15.00.
http://dx.doi.org/10.1145/3065913.3065923

A Beacon transmitter device - it has no intelligence and
simply broadcasts BLE advertising messages that contain
a type of identifier (e.g., a number, a set of numbers, or a
URL).
A Beacon reader - it constantly monitor for beacons, re-
trieves the identifier, and measures its Received Signal Strength
Indicator (RSSI).

Arguably, the “killer application” of beacon-based sys-
tems is Location-based Advertising (LBA) and related ser-
vices. In a typical deployment scenario, the beaconing is
conducted by devices mounted on strategic locations e.g.,
in front of items of interest [9]. When users come in prox-
imity to these devices, they receive notifications on their
BLE-enabled devices e.g., smartphones. Another popular
application is micro-location that involves identifying an ob-
ject’s relative position in short distance with higher granu-
larity. Such scenarios assume that beaconing is conducted
by portable tags that can be attached to valuable objects,
for instance keys or other valuable devices belonging to end-
users.

There is a clear value to using BLE technologies for human-
centric applications that depend on fine-grained location in-
formation. Given that these devices are targeting everyday
activities that are heavily dependent on location, there is a
clear need to have these devices designed to protect the end-
user against privacy attacks. Unfortunately, based on our
study, it appears that the vast majority of the existing bea-
con schemes naively omit the application of protection to the
transmitted BLE Beacon messages (i.e., unique identifiers)
and other important protocol-specific parameters, which in
turn can lead to a range of attacks.

This paper attempts to enumerate and describe possible
vulnerabilities of BLE Beacon technologies using the most
prevalent one namely, Apple’s iBeacon [4] as a test subject
for practical attacks. Our results indicate that BLE Bea-
con enabled systems are susceptible to a variety of attacks
that may target the end-user or the adopting corporation
including:

Beacon Hijacking - the registration of any of the beacons
operated by a specific vendor by a competing vendor. The
motive can be an attempt to aggressively advertise their
services within the location of the competitor or to simply
deny service to a competitor;

User Profiling - the registration of several vendors’ bea-
cons by an unrelated malicious vendor, with aim of receiv-
ing updates about the user’s location. This in turn enables
them to not only conduct fine-grained movement tracking,
but also progressively deduce the user’s habits;

Presence Inference - in certain application scenarios it is
possible to directly associate individuals with their emitting
beacons, in order to infer their presence in an area or even
track their relative movement;

Beacon Silencing - refers to the manipulation of the un-
derlying protocol mechanics to alter the perceived RSSI,
in an attempt to cancel the action that would be triggered
under normal conditions;

User Harassment - is created when an active attacker
manages to cause faster depletion of the reader’s resources.
The reader is usually the end-user’s smartphone device.

It appears that the associated security risks are so crit-
ical that several proprietary BLE-based technologies such
as Qualcomm’s Gimbal [12] and very recently Google’s Ed-
dystone [5] have proposed and incorporated certain security
features in their flavor of BLE technology schemes. However,
Qualcomm’s Gimbal is proprietary, closed source technology
and Google’s Eddystone is still in experimental stages. Both
fail to address the existing security issues in their totality.
In this paper, we focus our study on the iBeacon technology
because it is commercially available and already in use in
many real-word cases.

2. THE BLE & IBEACON TECHNOLOGIES
Bluetooth Low Energy (BLE) also known as Bluetooth

Smart [6] is a wireless communication standard specifically
intended for devices with limited capabilities and energy re-
sources such as the ones used in IoT applications. The fun-
damental motivation of BLE is to achieve short-lived connec-
tion between devices and burst-like data transfers, relying on
energy resources as limited as coin-cell batteries.

Any messages sent in the advertising channels can be
leveraged for different purposes including the broadcasting
of unprotected/non-sensitive data, for example readings of
a temperature sensor, to multiple devices at once. BLE
beacon schemes capitalize on the BLE advertising mecha-
nism. Data in the advertising messages of BLE have vari-
able length, and are organized into one or more advertising
data structures. In BLE, the advertising data structures are
essentially tuples of the form < Length, Type,Data >. The
structure of a generic advertising message is contained in
Figure 1.

Figure 1: Structure of a BLE Advertising and iBeacon Mes-
sages.

While broadcast transmissions are unprotected, BLE ap-
plies multiple security mechanisms to protect its connected
sessions. Even though the initial pairing mechanism during

which the various keys are generated has been the center of
critique and is considered insecure [23], we underline the fact
that most BLE modules that conform with the protocol in
the market are equipped with provably secure cryptographic
primitives (AES, HMAC, etc.) to support secure communi-
cations.

An iBeacon packet is a BLE advertising packet that is
comprised of two predefined advertising data structures. Fig-
ure 1 contains the structure of the payload of an iBeacon
packet. The first structure is mandated by the BLE proto-
col. It is 3 bytes long and is used to provide values for various
flags. The second structure is 26 bytes long and its purpose
is to host the various iBeacon identifiers along with other
protocol-critical parameters. The most important fields are:
Company ID: In this case it is always the Apple identifier
(value 0x00 0x4C);
Beacon Type: The brand of the beacon among the poten-
tial existing ones. It is always iBeacon identifier (value 0x02
0x15);
Universally Unique Identifier (UUID): a custom 16-
byte number mainly intended to identify the organizations
that have deployed the beacons (e.g. a retailer);
Major: a 2-byte number indented to identify the group
within which the beacons (say, a specific store of a retailer)
are deployed;
Minor: a 2-byte number that identifies a subgroup within
which the beacons have been deployed (e.g. a section inside
a store);
Measured Power: The estimated received signal strength
measured by a receiver that is positioned 1 meter away from
the transmitter.

3. THREAT MODEL AND ASSUMPTIONS
The adversary can have various motives depending on her

end-goals:
1) Nullify the investment of a competitor by rendering

their beacon system unusable; 2) Use existing beacon in-
frastructures as tools for tracking their valid users or deduce
their habits in the mid or long term; 3) Cause annoyance to
the end-user of beacon enabled applications that may lead
to removal of the corresponding application and hurting the
credibility of the corporation.

We assume that the attacker is in possession of software
(typically free) and hardware (typically inexpensive) that
allows her to sniff BLE packets including beacon messages in
larger-than-typical distances. This can be achieved through
the use of more efficient high gain antennas. In this way, it
becomes possible to capture and replay packets or even craft
and inject new ones with fields of choice. We also assume
that the specific equipment allows the attacker to broadcast
a flood of such packets. In some cases, the adversary must be
able to develop a beacon-enabled application and distribute
it as legit. Finally, we assume that the attacker can come to
proximity with their victim.

In the following section, the specific requirements for the
implementation of each attack and its constraints will be
further analyzed.

4. PRACTICAL ATTACKS AGAINST BLE
BEACONS

4.1 Beacon Hijacking

The term Beacon Hijacking refers to the registration of
one vendor’s beacon-identifiers by another vendor’s app, with
malicious intentions. While specific identifiers (i.e., UUID,
Major, Minor etc.) may be registered and monitored by the
benign vendor’s app, no technical means exist to prevent
other developers from incorporating the same identifiers in
their own apps. What is worse, due to the unencrypted na-
ture of the beacon messages, the identifiers associated with
an application owner can easily be inferred. Typically, it is
used to trigger a malicious action upon sensing the beacons
of a competitor, e.g. in scenarios of aggressive advertising
campaigns where a notification with an advertising message
is displayed right after the valid vendor’s message.

The malicious application must pre-register the benign
vendor’s beacons, thus knowledge of the identifiers associ-
ated with the victim is essential. Typically, the number
of these identifiers is limited, therefore the adversary can
even physically visit each competitor’s premises and cap-
ture them with the use of appropriate equipment. Any com-
puter with BLE capabilities (including common USB BLE
adapters such as the one offered by Plugable [19]), running
any Linux based distribution, with Bluez stack [7] suffices
for this task.

A major restriction imposed by the iOS platform is the
need for explicit location permission since CoreLocation ser-
vices are utilized. Nevertheless, we should underline that
while the location permission may discourage some users
from installing/using an app, recent studies [8] reveal that
almost 35% of the Android apps require the location per-
mission, (b) many apps that practice location tracking are
particularly popular, for example, the “Latest Nail Fash-
ion Trends” application has an estimated user base between
100,000 and 500,000, and (c) users are not discouraged to in-
stall apps that conduct tracking based on geolocation, even
though they have irrelevant purpose e.g., “PokerStars TV”
and “Cheezburger”.

Another restriction that the iOS platform enforces is the
registration of maximum 20-beacon per app, when the mon-
itoring of regions is conducted in the background. At the
same time there is a device-wide limit which is however spe-
cific to the device model and OS version. Restrictive as
these numbers may sound, they are sufficient for most ex-
isting scenarios in the retail sectors.

4.2 User Profiling
User Profiling in the context of BLE-beacon, refers to the

use of a malicious beacon-enabled application to secretly
monitor the user’s vicinity for 3rd party beacon messages.
Provided that a correlation of the type [location, beacon-
identifier] already exists, the adversary is able to infer the
user’s position and movement with very high precision i.e.,
centimeter level.

Essentially, the outcome of this attack is similar to the
well-known practice of user location tracking with GPS, al-
though it is preferable for situations where fine-grained po-
sitioning is required or for situations where the traditional
GPS coverage is not possible (i.e., indoor environments).
Through this practice, it is possible to construct a very ac-
curate profile of user’s preferences that include details such
as how often they visit a retail chain, which departments
they prefer, how much time they spend in front of specific
products, etc. Such data is invaluable for sectors like per-
sonalized advertising.

Similarly to beacon hijacking, the adversary must rely on
an spyware-like application installed on the user’s device to
secretly monitor for beacons. The application must report
any incident of sensing these beacons to a remote service
controlled by the attacker. The difference in this particular
attack is that the set of registered beacons is not restricted
in one vendor’s identifiers, but ideally all possible beacon
identifiers should be included.

The biggest challenge for achieving large-scale user surveil-
lance with this method, is the fact that it assumes the exis-
tence of a comprehensive database of beacon-identifiers and
their corresponding locations/vendors/products. The pro-
cess for building a database of this kind would be extremely
cumbersome for a single attacker, yet online services such
as Wikibeacon [21] exist with the purpose of identifying and
mapping beacons worldwide.

An additional iOS specific challenge is the limit of 20 reg-
istered beacons per app. Indeed, this restriction leaves very
little room for effective user tracking. A simple solution for
circumventing this limitation would be to rely on GPS po-
sitioning to recursively download from a remote web service
the expected 20 closest beacons for the wider geographical
area of the user and then register these identifiers on the fly.
Let us underline that GPS-based positioning and beacon-
based proximity estimation rely on the same API services
in iOS (CoreLocation), so similarly to beacon hijacking only
the location permission is required.

The Android Beacon Library enforces no restrictions on
the number of regions an application is allowed to moni-
tor, making this attack much more efficient for the Android
platform.

Figure 2 displays the web interface of a proof-of-concept
tracking system based on beacons that is developed by us.
The reader can notice that it is possible to track users with
much higher granularity even inside buildings and report
on their actions. Tracking of multiple users and filtering
according to time is also possible.

Figure 2: Web interface of beacon tracking application.

4.3 Presence Inference
Presence Inference aims in reporting the presence of a

portable, beacon-emitting object that has been associated
with a specific user, usually through the means of physical
surveillance.

Figure 3: Low cost equipment that can be used for capturing
beacon signals.

This vulnerability stems from the fact that the identi-
fiers contained in the beacon messages remain static in every
broadcast, and that beacon devices are immutable. Actu-
ally, the BLE specification itself attempts to tackle a similar
implication by incorporating the concept of private (i.e., ran-
domized) MAC addresses. More specifically, the MAC ad-
dress that is included in every advertising message of BLE
devices gets randomized according to equation 1:

MAC = rand||EIRK(rand) (1)

where rand is a chosen random number, || is the act of con-
catenation, and IRK is a derived secret key shared among
users and tags. Yet, in the case of BLE Beacon systems even
if a similar mechanism would have been applied to random-
ize the MAC, the existence of fields such as the UUID inside
the payload, would defeat the purpose.

Inexpensive hardware equipped with high gain antennas
must be placed in strategic locations (e.g., outside super-
markets), and constantly monitor for specific identifiers car-
ried by persons of interest. When the beacon-emitting user
passes in front of any monitoring equipment, the event is
logged and reported.

The challenges of this approach are associated with the
construction of a database of persons/beacon-identifiers. Since
this step involves physical surveillance it can not be done in
large scale. Thus, this methodology is more appropriate for
tracking a limited number of high profile targets. Moreover,
due to the difficulty of installing the surveillance equipment
in certain areas (e.g., inside a store), it is less effective for
profiling the user’s behavior or in pinpointing the exact loca-
tion, but it is more effective for reporting a person’s presence
among a large crowd (e.g., a protest) or an area.

We conducted a series of experiments to decide the max-
imum useful distance in which an adversary is able to infer
the presence of a beacon inside an area. The equipment used
in the experiments consisted of (a) an iPhone 6s Plus, (b) an
Android Nexus 4, (c) a laptop equipped with a BLE dongle
(Plugable USB Bluetooth 4.0 Low Energy Micro Adapter),
as well as (d) the same laptop equipped with a Sena UD100
Long Range Bluetooth 4.0 Class1 USB adapter and a high
gain antenna (RP-SMA 2.4GHz 7 DBI). The latter equip-
ment was used to further boost the capture of the signal
although it is possible to achieve the same results in a much
stealthier fashion by relying on battery powered Raspberry
Pi instead of a laptop. The latter assembly is presented in
figure 3.

The results indicated that all 3 mobile devices achieve
sensing of beacons from a similar range. More specifically,
the maximum radius achieved is 74 meters for the laptop,

78 meters for the iPhone 6s Plus and 81 feet for the Nexus
4 device. However, when an equipment with high gain an-
tenna is used, the active radius expands to more than 335
meters. Figure 4 gives a visual indication of the distance of
the bearer to the reader when the Android device is used vs
the custom high-gain antenna based equipment. In figure 5
a comparison of the coverage areas of the mentioned mon-
itoring nodes is presented. The green circle designates the
coverage of the laptop equipment, the purple the iPhone,
the blue the Android, while the gray refers to the coverage
area achieved with the high-gain antenna equipment.

(a) Android device (b) High gain antenna

Figure 4: Visual comparison of the distance achieved sensing
beacon signals.

This practically means that an attacker is able to infer
the presence of a beacon-bearing person of interest, inside a
large geographic area such as a university campus, by simply
placing 3-4 monitoring nodes in strategic locations.

Figure 5: Area covered by various monitoring nodes (ordi-
nary devices cover 75 meters area while devices equipped
with high gain antennae cover 300 meters.

4.4 Beacon Silencing
The goal of Beacon Silencing is to manipulate a reader

into perceiving a beacon tag as remote, while it actually
exists within its proximity. This attack is possible primar-
ily due to the exposure of the Measured Power field -one
of the two variables along with RSSI, that is used in the
proximity calculation- as part of every beacon message. An
additional source of this vulnerability is the fact that due
to the high fluctuations of the RSSI value, the proximity
calculation is averaged by multiple signals. For example, in
Android Beacon Library the code for estimating the prox-
imity of a beacon tag from the reader is given in Listing 1.
Similar methods for the estimation of proximity are defined
in iBeacon for iOS and in Eddyston for Android.

Attackers may introduce their own equipment that trans-
mits a flood of spoofed beacons with a greater Measured

Power value. In that way, the estimation of proximity will
become biased towards the fake readings and result to the
calculation of inaccurate proximity estimation.

protected static double calculateAccuracy(int txPower,double rssi)
{

if (rssi == 0) {
return -1.0; // if we cannot determine accuracy, return -1.

}

double ratio = rssi*1.0/txPower;
if (ratio < 1.0) {
return Math.pow(ratio,10);

}
else {
double accuracy = (0.89976)*Math.pow(ratio,7.7095) + 0.111;
return accuracy;

}
}

Listing 1: Method for estimating the proximity between a
beacon tag and reader used in Android Beacon Library.

4.5 User Harassment
This attack of User Harassment refers to any action at-

tempting to cause any type of disruption of the normal op-
eration of a valid beacon-enabled reader by exposing it to a
flood of forged beacon messages.

Typically, the reader is multi-purposed and multitasking
i.e., the beacon-related services it listens to are not the sole
purpose of the device as in the case of RFID readers for ex-
ample. Theoretically, a significant degradation on device’s
performance could be achieved, mainly due to the large num-
ber of filtering operations taking place when a valid reader
is exposed to a beacon saturated environment. The reader
should take into account that the user’s device might have
more than one beacon-enabled apps installed, with each ap-
plication recognizing more than one identifiers. More specif-
ically, for an action to be triggered by the presence of a reg-
istered beacon O(n ∗ a ∗ r) checks have to take place, where
n is the number of beacons transmitted in the area, a is the
number of beacon-enabled apps in the user’s device, and r is
the number of the registered identifiers recognized by each
device. These operations take place constantly per time-
segment and may cause faster draining of battery, memory
exhaustion, or higher CPU utilization.

Relevant reports [1] indicate that the described process is
becoming more efficient due to better utilization of the hard-
ware capabilities in the latest smartphone models. However,
our experimental evaluations attest that it is possible to sig-
nificantly drain the battery of a modern mobile device by
transmitting a few iBeacon signals approximately every 30
seconds, if the corresponding application is set to trigger a
notification on the entry event. Figure 6 displays the ac-
celeration factor of the energy consumption which reaches
25% on an iPhone 6s Plus (an exhaustion of 687 mA ap-
proximately), when an attacker actively transmits a single
Beacon message for 4 hours in 30 second intervals. Note
that in these experiments all network communication (ex-
cept Bluetooth) was disabled. A drain of such magnitude is
likely to cause annoyance to the user.

5. RELATED WORK

Figure 6: Battery consumption when constantly responding
to enter/exit events.

Security in BLE Beacon systems is a heavily neglected
topic in research community. The work in [20] was the first
one to describe a vulnerability of the iBeacon protocol, i.e.,
the possibility for the creation of covert channels, to achieve
exfiltration of private information from beacon-enabled net-
works. This vulnerability does not apply in the latest version
of the specification.

The bug 67272 of the Android OS was the source for per-
manently corrupting the Android Bluetooth Service, when
the device was exposed to the broadcasting of a Gimbal tag.
This behavior (and a potentially vulnerability) was created
due to a restriction in the max number of entries (up to
1990) to the database of “seen” Bluetooth MAC addresses.
The Gimbal tag frequently changes its MAC address every
given interval, thus causing the problematic file to overflow.
Reportedly, the bug has been fixed for newer versions of the
Android OS.

The authors in [16] identified the privacy risks of commer-
cially available proximity tags and stressed out the lack of
protection mechanisms of the transmitted messages.

Researchers Alasdair Allan and Sandeep Mistrymanaged
managed to partially reverse-engineer the Estimote iOS SDK
and the iOS CoreBluetooth framework using the method
swizzling technique and the class-dump utility [18]. By doing
so, the researchers revealed that the Estimote SDK naively
used static encryption and decryption keys compromising
the smartphone/beacon pairing process. The same researchers
were able to hack the iBeacon-enabled promotional scav-
enger hunt competition at Consumer Electronics Show (CES)
[2], [3]. More specifically, by decompiling the corresponding
application, the authors were able to infer the UUIDs used
for the competition and used them to win the competition
from the comfort of their home.

Industrial efforts towards more secure version of beacons
include Gimbal [12] and Kontakt.io [17]. These vendors have
incorporated their own security-enhanced proprietary pro-
tocols that rely on custom rotation mechanisms on the in-
cluded beacon identifiers. The main aim of these initiatives
is to tackle user tracking over prolonged periods of time.
On the one hand, tracking is possible between consecutive
rotations. On the other, preliminary experiments indicate
that static rotation intervals can actually act as beacon in-
dicators defeating the privacy of the schemes. Additionally,
such mechanisms seem to have tremendous impact on the
exhaustion of the energy resources of the beaconing devices.

In 2016 researchers from Google published a white pa-
per introducing the concept of cloud-based Ephemeral Iden-
tifiers as a protection mechanism for the Eddystone plat-
form [14]. Their solution requires symmetric encryption and
global synchronization. While the proposed solution tackles
the aforementioned vulnerabilities in a satisfactory extend,
there are attacks mentioned in the work at hand that are
left unaddressed. More specifically, beacon silencing and
user harassment. Moreover, there is skepticism about the
scalability of the solution with respect to the cloud service
component of the system as well as the energy efficiency of
the approach on the beacon-device side.

Privacy threats are not specific to iBeacons, but a large
portion of BLE-enabled mobile devices that rely on bea-
cons to advertise their presence permit large-scale tracking.
Fawaz et al. [11] conducted an extensive study across 214
BLE-enable devices to conclude that BLE advertising mes-
sages, mainly due to unthoughtful design and implemen-
tation decisions, leak an alarming volume of artifacts that
permits the tracking and fingerprinting of users. Similarly,
the study in [10] focuses on BLE-enabled fitness trackers and
finds that the majority of them use static hardware address
while advertising, which allows user tracking.

6. CONCLUSION
While the advantages of BLE beacon systems are clear

they can be overcome by inherent privacy and security risks
of such systems. These risks are primarily stemming from
the unprotected nature of the BLE Beacon messages. Even
though vendors claim that security in the BLE Beacon realm
is irrelevant due to the non-mission-critical nature of its ap-
plication, we have exposed several vulnerabilities that can be
exploited by low-skilled adversaries with inexpensive equip-
ment. At the same time we showed that some of the vulner-
abilities are violating the end-users’ privacy.

several inefficiencies, thus the security of BLE Beacons
should be treated as an open research topic.

Our future work will focus on highlighting the shortcom-
ings of such security schemes, along with the development
of an efficient security layer on top of an open beacon speci-
fication such as the Altbeacon [15] as well as a more efficient
security scheme for the Eddystone platform.

References
[1] Aislelabs. iBeacon battery drain on apple vs android:

A technical report. http://www.aislelabs.com/reports/
ibeacon-battery-drain-iphones/, Last Accessed: 02-12-2017.

[2] A. Allan and S. Mistry. Hacking the CES scav-
enger hunt. http://makezine.com/2014/01/03/
hacking-the-ces-scavenger-hunt/, Last Accessed: 02-
12-2017.

[3] A. Allan and S. Mistry. Hacking the CES scavenger
hunt for a second time. http://makezine.com/2016/01/07/
hacking-ces-scavenger-hunt-second-time/, Last Accessed:
02-12-2017.

[4] Apple. Proximity Beacon specification R1. https://
developer.apple.com/ibeacon/, Last Accessed: 02-12-2017.

[5] M. Ashbridge. Eddystone protocol specification.
https://github.com/google/eddystone/blob/master/
protocol-specification.md, Last Accessed: 02-12-2017.

[6] T. Bluetooth Special Interest Group. Specification
of the Bluetooth system, covered core package ver-
sion: 4.0. https://www.bluetooth.com/specifications/
bluetooth-core-specification, Last Accessed: 02-12-2017.

[7] Bluez Project. Bluez official Linux Bluetooth protocol stack.
http://www.bluez.org, Last Accessed: 02-12-2017.

[8] B. Botezatu, V. Bordianu, and T. Axinte. Mobile operat-
ing system wars – Android vs. iOS. Technical report, Last
Accessed: 02-12-2017.

[9] J. Browne. Positioning visitors with iBeacons. https:
//www.brooklynmuseum.org/community/blogosphere/
2014/10/14/positioning-visitors-with-ibeacons/, Last
Accessed: 02-12-2017.

[10] A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra.
Uncovering privacy leakage in BLE network traffic of wear-
able fitness trackers. In Proceedings of the 17th International
Workshop on Mobile Computing Systems and Applications,
pages 99–104. ACM, 2016.

[11] K. Fawaz, K.-H. Kim, and K. G. Shin. Protecting privacy
of BLE device users. In 25th USENIX Security Symposium
(USENIX Security 16), pages 1205–1221. USENIX Associa-
tion, 2016.

[12] Gimbal. Gimbal. http://gimbal.com, Last Accessed: 02-12-
2017.

[13] Google. The physical Web. https://google.github.io/
physical-web/, Last Accessed: 02-12-2017.

[14] A. Hassidim, Y. Matias, M. Yung, and A. Ziv. Ephemeral
identifiers: Mitigating tracking & spoofing threats to BLE
beacons. 2016.

[15] D. Helms. Altbeacon protocol specification v1.0. https://
github.com/AltBeacon/spec, Last Accessed: 02-12-2017.

[16] C. Kolias, A. Stavrou, J. Voas, I. Bojanova, and R. Kuhn.
Learning Internet-of-Things security” hands-on”. Security &
Privacy, IEEE, 14(1):37–46, 2016.

[17] Kontakt.io. Kontact.io secure. https://kontakt.io/
products-and-solutions/complete-beacon-security/, Last
Accessed: 02-12-2017.

[18] S. Mistry and A. Allan. Reverse engineering
the Estimote. http://makezine.com/2014/01/03/
reverse-engineering-the-estimote/, Last Accessed: 02-
12-2017.

[19] Plugable. Plugable usb 2.0 Bluetooth adapter. http:
//plugable.com/products/usb-bt4le, Last Accessed: 02-12-
2017.

[20] J. Priest and D. Johnson. Covert channel over Apple iBea-
con. In Proceedings of the International Conference on Se-
curity and Management (SAM), page 51. The Steering Com-
mittee of The World Congress in Computer Science, Com-
puter Engineering and Applied Computing (WorldComp),
2015.

[21] Radius Networks. Wiki Beacon project. http://www.
wikibeacon.org, Last Accessed: 02-12-2017.

[22] Raggett, D. Towards the Web of things. www.w3c.
org/Talks/0926-dsr-WDC/slides.pdf, Last Accessed: 02-12-
2017.

[23] M. Ryan. Bluetooth: With low energy comes low security.
In Proceedings of the 7th USENIX Conference on Offen-
sive Technologies, WOOT’13, pages 4–4, Berkeley, CA, USA,
2013. USENIX Association.

