
BADUSB-C: Revisiting BadUSB with Type-C
Hongyi Lu1,*, Yechang Wu1,*, Shuqing Li1,*, You Lin1, Chaozu Zhang1, Fengwei Zhang1,2,�

1Department of Computer Science and Engineering, Southern University of Science and Technology
2Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology

{11712009,11711918,lisq2017,11711809,11712021}@mail.sustech.edu.cn,zhangfw@sustech.edu.cn

Abstract—The security of the Universal Serial Bus (USB)
protocol has been paid extensive attention to because of its
wide usage. Due to the trust-by-default characteristics, USB
security has caused severe problems. For example, a well-known
firmware attack, BadUSB, performs malicious operations on the
victim hosts through disguising ordinary USB devices as human
interface devices like keyboards and mice. However, BadUSB
suffers from several limitations. Attackers cannot obtain the
status of User Interface (UI) to conduct precise attacks and get
the visual feedback of their attacks. In this work, we extended
BadUSB to support the new USB Type-C features and proposed
a multi-mode attack model, BADUSB-C. This obtains UI status
to make attacks more precise and effective. To the best of our
knowledge, BADUSB-C is the first attack model utilizing USB
Type-C. To validate the usability and effectiveness, we conducted
extensive experiments to simulate daily usage and summarized
the private information collected. We also discussed the recom-
mended countermeasures for our attack model, including isolated
UI rendering, which may be inspiring for future research on
defense methods.

Index Terms—USB; BadUSB; Type-C; Attack

I. INTRODUCTION

The Universal Serial Bus (USB) protocol has become pop-
ular worldwide since its appearance in 1996, as it provides
a unified and easy-to-use approach for an extensive range of
devices to communicate with each other. From version 1.0
till now, USB specification has evolved rapidly and offered
more and more functionalities. Nowadays, devices with USB
support are ubiquitous.

Conversely, the security of USB has caused severe prob-
lems. Recent research of all USB specifications indicates that
security has not been taken into consideration [1]. There are
more than 400 vulnerabilities related to USB on CVE list [2].
As a result, many attackers exploit these vulnerabilities and
the trust-by-default characteristics of USB to conduct attacks,
which puts the privacy and financial security of USB users in
danger [1].

BadUSB is a well-known class of firmware attacks [3].
These attacks are conducted by modifying the device firmware,
which are disguised as ordinary USB devices as other types
of devices that are trust-by-default by the hosts. Typically,
simulated devices include Human Interface Device (HID) [4]
and disks. Utilizing BadUSB, attackers can pretend to be reg-
ular users, typing malicious commands to victims’ computers,
downloading and executing malicious scripts, and copying out
private data from disks. Such attacks can easily avoid detection

∗ The first three authors contributed equally to this work.
� Fengwei Zhang is the corresponding author.

by traditional anti-virus software since it is hard to distinguish
them from ordinary USB devices.

Despite the advantageous features of BadUSB, there exist
several limitations as follows. (1) Attackers cannot conduct
attacks precisely, which decreases the capabilities of BadUSB
attacks. When performing attacks on another host, the at-
tackers cannot obtain the current User Interface (UI) status,
limiting them from taking subsequent moves. For example, it
is hard for attackers to locate specific functional UI patterns
such as buttons and links on victim’s computers by disguising
USB devices, e.g., mice. This explains why typical BadUSB
attacks often only stay in the command line, using commands
to download malicious scripts for execution. However, these
attacks may be intercepted by anti-virus software or firewall
due to the host network usage. (2) To our best knowledge,
existing BadUSB attacks only utilize the features of USB 2.0.
The release of USB 3.0 makes USB more powerful, with
a higher transmission rate for data and the support towards
a more extensive range of peripherals such as DisplayPort,
HDMI and PowerDelivery. BadUSB attacks can become more
effective with the help of newly supported features in USB 3.x.
(3) There have emerged multiple efficacious countermeasures
after the appearance of BadUSB. For example, GoodUSB
offers a defense method by limiting the functions of USB
devices to users’ expectations [5]. It provides a Graphical User
Interface (GUI) for users to describe the functionalities or roles
of the USB device and reject any usage beyond the description.

In this work, we addressed the limitations mentioned
above and implemented a multi-mode attack model of USB,
named BADUSB-C. BADUSB-C extends BadUSB to support
the features of USB Type-C. Although many smartphones
equipped with USB-C connectors do not support USB 3.x
protocol, such as products of Xiaomi, however, vendors like
HUAWEI and Samsung tend to support USB 3.x protocol
in their high-end smartphones [6]. Since USB Type-C can
transfer video stream data, BADUSB-C could obtain the
information of the victim’s GUI during attacks. Combining
it with the emulation of traditional HIDs, e.g., keyboards and
mice, attackers are capable of performing precise attacks.

Moreover, we implemented multiple attacking modes of
USB attacks based on our approach to verify its effectiveness,
including HID emulation mode, video capture mode, and full
control mode. To improve the efficiency and performance of
BADUSB-C, we designed a filtering algorithm to preprocess
the video data before network transmission. We conducted a
series of experiments for each attack mode as well as for

1

different types of devices, including smartphones, personal
computers, and tablet computers, to validate the usability of
BADUSB-C. We also conducted a case study for attacks
in sharing power banks, one of the application scenarios of
BADUSB-C. After the validation of our attack model, we
proposed several defense methods as countermeasures, includ-
ing external hardware authorization, distrust-by-default, etc. It
is worth noting that we designed a method, called isolated
UI rendering, to separate the user interface into sensitive and
insensitive layers. Only the insensitive layer’s content would
be passed to the insecure driver and thus rendered on the
external display, protecting the sensitive layer’s content.

We summarize our key contributions as follows:
• To our best knowledge, this is the first work to utilize

new features of USB Type-C. The combination of new
support with conventional BadUSB makes attacks more
precise and effective.

• We conducted a case study and multiple experiments to
validate the usability and effectiveness of BADUSB-C.
We also proposed several countermeasures for our attack
model, which are reasonable and insightful.

The rest of this paper is structured as follows. Section II
provides the background of USB specification. Section III
introduces the existing works of USB security from the aspects
of attacking and defense, respectively. In Section IV, we
present the threat model and the overall implementation of
BADUSB-C in three different modes. The experiments we
conducted are featured in Section V. We present some possible
countermeasures of BADUSB-C in Section VI. The limits and
impacts of our approach are discussed in Section VII, and the
conclusion lies in Section VIII.

II. BACKGROUND

We first introduce the development of USB specification
and emphasize the key points adopted in this work. We also
organize a brief timeline for introducing key points of each
protocol in Table I.

Proposed in 1996, USB 1.0 [7] was developed to provide a
unified interface and thus reducing the cost of reconfiguring
the software. It is worth mentioning that as a polled-bus
interface, all data transfers are initiated by the host.

Right after one year of the appearance of USB 1.0, a stan-
dard named Human Interface Device (HID) [4] was designed
based on USB. HID is designed to unify the implementation
for devices like keyboards, mice, etc. Before its appearance,
the standard is divided among manufacturers, for example, the
mouse of Company A may use X-Y coordinates to represent
its location while the mouse of Company B uses relative
displacement. This means every device needs its own driver
to work. After HID, users only need to write one driver for
an entire class of HIDs. Furthermore, the HID standard also
requires all devices to be Plug-and-Play (PnP), which is indeed
convenient but insecure too.

In 1998, the first widely supported USB protocol was
designed. USB 1.1 [8] provides two data transfer rates which
are low speed (1.5 Mbit/s) and full speed (12 MBit/s). At this

Fig. 1: USB 1.x & 2.x Connector.

Fig. 2: USB Type-C Connector.

point, due to the transfer limitation, it only supports limited
types of devices like keyboards, mice, etc.

In 2000, the USB 2.0 [9] specification was released. With
high speed (480 Mbit/s) mode introduced, printers, cameras,
CD-ROM drives, and network cards are supported in this
revision. Such a high data transfer rate also give rise to
the popularity of “flash drive”, a portable device that allows
physically transferring data around [1]. Although various pe-
ripherals are supported in USB 2.0, there is no reliable way to
identify the type of device. This security flaw allows attacks
like BadUSB [3], [10].

USB 3.0 [11] was introduced in 2008, with a super speed
(5 Gbit/s) data transfer rate. Like its predecessor, more classes
of peripherals are supported in this revision. In 2013, the USB
Type-C connector standard was introduced as a part of USB
3.1 [12], providing a unified connector type for PowerDelivery,
Thunderbolt, DisplayPort, and HDMI. Yet no improvement of
security is introduced in 3.x revisions, meaning any device
claiming itself as a monitor can capture the video stream from
the host. Exposing such a multi-purpose connector unprotected
is insecure and allows attacks similar to BADUSB-C. In 2017,
USB 3.2 [13] was released, doubling the data transfer rate (20
Gbit/s).

As illustrated in Figure 1, the original USB 1.x &
2.x connector only has two pins for data transferring
(D+ & D-), which has significantly limited data transfer rate
(5 Gbits/s Max) and cannot support peripherals like Display-
Port (10.8 Gbit/s Min). Apart from that, support for other
peripherals also requires dedicated transferring lanes as their
standards are not compatible with USB in most cases.

Thus, to provide support towards a wider range of peripher-
als, a 24-pins standard called USB Type-C [14] was introduced
in 2013 by USB-IF [15]. As it is designed to be double-sided,
the number of actually usable pins is halved. Nevertheless, this
standard has largely enhanced the capability of the USB 3.x
protocol. As presented in Figure 2, Type-C add two high-speed
data lanes (TRX1 & TRX2) and keep the original data lane

2

(D+ & D-). The added lanes are used exclusively to support
peripherals like DisplayPort while the kept data lane transfers
USB packets.

During the development of the USB specification, security
was insufficiently considered [1]. The USB-IF believes it is the
duty of Original Equipment Manufacturers (OEMs) to decide
whether security features should be implemented [16]. But
the divergent implementations give a chance for attacks like
BadUSB [10] and our BADUSB-C.

III. RELATED WORK

We surveyed related works on USB attacks in Section III-A
and USB security defense in Section III-B, respectively.

A. USB Attacks

During the development of the USB protocol, many
USB-based attacks were proposed, ranging from Denial of
Service (DoS) to protocol masquerading.

From the kernel perspective, its USB software stack gen-
erally expects devices to follow the USB standard and may
not consider corner cases of malformed USB packets. Based
on this, Facedancer [20] and Syzkaller [21] use fuzzing
techniques to uncover the bugs lying in the kernel drivers.
These bugs can cause kernel crashes and lead to a DoS attack.
Though this poses a great challenge to the availability of a
system, this attack still requires physical access to the victim’s
device and is unable to cause more damage other than DoS.

In the field of USB security, protocol masquerading is also a
widely used attack scheme. Due to the lack of authentication
in the USB protocol, malicious devices can hide their real
functionality with re-written firmware [3], [10], [22]–[25].
These works rewrite the firmware of a normal-looking flash
drive, which allows it to act like other devices. When these
modified drives are connected to the victim’s device, they
could be recognized as a keyboard or mouse. Then attackers
can execute malicious payloads as they are using the victim’s
device. Due to the limitation of USB 2.0 [9] protocol, these
BadUSB attacks [3] are unable to obtain video feedback from
the victim’s device as video stream was not supported until
USB 3.0 [11].

Mobile High-Definition Link (MHL) extends the USB stan-
dard and allows the video signal to be transmitted through
the USB interface even for USB 2.0 protocol. Juice Filming
Attacks (JFA) [18], abuses this standard and monitors the
victim’s device utilizing USB 2.0 protocol. Although JFA [18]
could exfiltrates video data from the victim’s device without
permission, there are two main limitations compared with
BADUSB-C: (1) JFA [18] can only exfiltrate video data
passively from the victim’s device, while BADUSB-C can
control the victim’s device at the same time as monitoring
the screen. The data can only be collected by JFA after the
victim’s interaction, while BADUSB-C can gather sensitive
data actively through HID injections. For example, if a victim
leaves his/her phone charging without locking it, JFA cannot
conduct attacks in this case, while BADUSB-C can actively
control his/her device and gather sensitive information. (2) The

official list of MHL Devices [26] shows that the latest mobile
devices supporting MHL were released in 2015, which indi-
cates the lack of support of MHL and limits the attack range
of JFA. BADUSB-C attacks the victim’s device over USB
Type-C interface, the latest USB connector designed to replace
all previous USB connectors including MicroUSB [27]. So
BADUSB-C has a wider attack range.

Besides attacking from the protocol perspective, previous
works use a USB device as a payload delivery means.
Duqu [17] uses a user-mode rootkit to hide malicious files
on the USB storage device, Flame [28] uses a zero-day
exploit and malicious autorun.inf to execute the malware
automatically. There are also works [29]–[31] following the
same paradigm and performing code-injection attacks. These
attacks are much more damaging and flexible, but they require
certain existing flaws like a zero-day vulnerability [32] and
USB is merely a payload delivery method.

As a data transmission protocol, USB inevitably leaks
electromagnetic signals to the environment which may contain
sensitive information. Leveraging this physical phenomenon,
previous works [25], [33]–[41] eavesdrop on the leaked signals
and recover the sensitive data. In a similar fashion, USBee [42]
and TURNIPSCHOOL [43] emit electromagnetic emissions
by data injection on the bus with the connected USB devices
as an RF transmitter and USBKiller [44] injects analog power
to cause physical damage to the host machine. Even though the
data, including the video data, could be recovered in this way,
these attacks for executing malicious code are too difficult to
work, and invisibility is a problem that cannot be ignored due
to the spatial locality of radio frequency.

Since USB 3.1 [12] was introduced with USB Type-C in
2013, DisplayPort and HDMI connectors have been provided
by USB Type-C, transferring of video data can be combined
with the other attacks, like protocol masquerading, protocol
corruption, and code injection. This has paved the path for
our BADUSB-C.

B. USB Security Defenses

Many defenses have been proposed to defend against
BadUSB attacks [1].

From the hardware perspective, the BadUSB attack requires
(D+ & D-) pins which are defined by the protocol to transmit
data. Without these pins, data cannot be transferred via a USB
cable. Based on this fact, USB Condom [45] is a hardware
solution to block data channels by adding a blocker in the
connector. This blocker can cut off the (D+ & D-) connection
while leaving the power pins intact. However, this method
poses a great challenge to the PnP property of USB, as once it
is deployed, it will stop all USB functions other than charging.

Under the premise of ensuring the full functionality of USB
devices, some works improve the security while establishing a
connection. Windows Defender ATP [46] maintains a whitelist
of USB devices, only devices on the whitelist are allowed
to communicate with the host. This prevents all potential
attacks from untrusted devices, however, this requires users to
have a certain security awareness and technical background

3

Year Protocol Version Supported Peripherals Transfer Speed Attacks
1996 USB 1.x [7], [8] Keyboard, Mouse... 1.5 Mbit/s or 12 Mbit/s HID Emulation (BadUSB) [3]

2000 USB 2.0 [9] Flash Drive, High-Definition Link, CD Driver... 480 Mbit/s Autorun Attack [17], Juice Filming [18], [19]

2008 USB 3.0 [11] / 5 Gbit/s /

2013 USB 3.1 [12] HDMI, DisplayPort, ThunderBolt... 10 Gbit/s BADUSB-C

2017 USB 3.2 [13] / 20 Gbit/s /

TABLE I: USB Protocol Timeline.

to maintain a valid whitelist. For example, a naive user
may add the USB device from unknown sources to his/her
whitelist without precaution. Fortunately, some designs have
been proposed to overcome this drawback. For instance,
Mohammadmoradi et al. [47] propose a strategy to generate
such a whitelist automatically. This strategy first generates a
unique fingerprint for each device based on its functionality.
Then these fingerprints are used to maintain a secure and valid
whitelist of USB devices. There is another work mediating
USB connectivity for industrial control. TMSUI [48] relies
on the rich experience of administrators to build a whitelist.
However, some modified USB devices may hide their real
functionality from the user.

To solve this flaw, GoodUSB [5] reports the functionality
claimed by the USB device to the user and lets the user
decide whether to authorize. When a device is plugged in,
GoodUSB blocks its functionality before enumeration until
a series of authorizations are completed. These authorizations
are designed to be performed manually, thus the malicious de-
vices will be detected if they make a different claim that does
not match the authorization results. USBeSafe [49] analyses
the feature vector constructed with the data collected from
USB Request Blocks, detects the novel USB packets based
on the machine learning algorithm and sends an alert to the
user before enumeration. As BadUSB attacks normally request
privileged interfaces during enumerating, these defenses are
sufficient for these attacks. Moreover, Mueller et al. [50]
improve the security without changing the user experience.
It can detect the presence of the user, block malicious devices
in the user’s absence until the session is unlocked.

After the USB enumeration and driver loading, some related
works follow the defense in depth approach to defend against
BadUSB attacks. Neuner et al. [51] prevent BadUSB attacks
from the malicious flash drive by analyzing the temporal char-
acteristics of BadUSB-like attacks. This defense mechanism
is effective because the attacker cannot obtain the screen of
the victim’s device using BadUSB. In this case, the malicious
device can only inject keystrokes in a very short time to
reduce the risk of being discovered. This property causes the
typing characteristics of BadUSB to be detectable. Pham et
al. [52] optimize Windows security features, which can block
the execution of unsigned files and the installation of unsigned
drivers carried on portable media. Moreover, in GoodUSB, a
VM is deployed in the host as a honeypot to detect and stop
malicious behavior of USB devices.

In addition to injection attacks, data theft attack is also one

of the focuses of the academic community. As mentioned in
Section III-A, there exists an attack called JFA [18] which
abuses the MHL standard to steal the video stream from the
victim’s mobile phone. In order to mitigate this issue, Meng et
al. [53] propose a statistical model using status like GPU/CPU
usage to detect JFA attacks.

Therefore, there exists a clear trade-off between the effec-
tiveness and the PnP property. Although hardware disabling
solutions like USB Condom achieve almost absolute security,
the functionality of USB is sacrificed. Other solutions like
whitelist are either bypassable or insufficient under certain
scenarios. Vendors may sacrifice complete security to improve
usability, which allows attackers to take advantage of.

We summarize the former efforts on USB attacks and
defenses in Table II. [25], [33]–[44], [54] are not included in
this table, because these works are all recovering or injecting
signal on the physical layer, we only illustrate the effective-
ness of each defense against various attacks, including our
BADUSB-C, on the software layer in Table II.

IV. BADUSB-C

A. Threat Model

We build our threat model on a basic assumption that
common users without technical background would not treat
a normal-looking USB device as malicious and be cau-
tious about them. This assumption is consistent with existing
works [19]. Moreover, we omit the effect of notifications from
USB devices, as users may not have the knowledge to fully
understand such notifications.

We also assume the victim’s device is equipped with fully
functional USB 3.x protocol and USB Type-C connector. As
the USB 3.x standard is common nowadays, this assumption
can be fulfilled in recent devices.

B. Implementation

As introduced in Section III, existing works [3], [10], [22]–
[25] focus on BadUSB attacks. Many of these take advantage
of the trust-by-default policy of PC, pretend to be normal
HID devices and utilize the USB protocol to perform attacks.
However, these attacks suffer from various drawbacks: ¶
attackers can only simulate limited types of devices such
as HIDs (e.g. keyboards and mice) and disks, which makes
the attacks less effective; · accurate attacks could not be
performed due to a lack of UI status. Whatever HIDs the
attackers simulate their USB devices to be, they could not
obtain the UI to check the status information, which makes it

4

Defense

Attack Facedancer [20],
Syzkaller [21] [3], [10], [22]–[25] JFC [18] Duqu [17],

[28]–[31] BADUSB-C

USB condom [45]

Windows Defender ATP [46],
Mohammadmoradi et al. [47],

TMSUI [48]

GoodUSB [5]

USBeSafe [49]

Mueller et al. [50]

Neuner et al. [51]

Pham et al. [52]

JFCGuard [53]

means that the defense is effective
means that the defense is partial effective
means that the defense is not effective

TABLE II: Effectiveness of Defenses against USB Attacks

nearly impossible to carry out their attacks precisely or know
the effects after attacks.

Based on the drawbacks introduced above, several defense
mechanisms were proposed. For example, GoodUSB [5] im-
plements an authorization procedure when a new device is
plugged in and blocks other functions except authorized ones.

In this work, we utilize the new features of USB 3.x [12],
[13] to address the problems above. Benefiting from the latest
protocol, we simulate an external display and thus obtain
the video stream to perform accurate attacks. However, we
are still unable to bypass defenses like GoodUSB [5], which
completely blocks unauthorized functionality. This will be
further discussed in Section VII

As there were various BadUSB implementations available,
this work focuses on our new extensions. Next, we first
introduce the components we used in BADUSB-C, then we
focus on the three different attack modes we implement for
various scenarios.

1) Attack Model: Figure 3 shows the architecture of our
attack model. 1 represents the victim’s devices; 2 is
our BADUSB-C; 3 is the attacker’s remote PC. The details
of each component in BADUSB-C are as follows.

• USB 3.x Hub exports the USB 3.x connector into various
ports, like DisplayPort, USB 2.0 port, etc.

• Video Capture Card converts DisplayPort signal into
compatible data, which is later processed by the Single
Board Computer (i.e., an embedded computer).

• HID Emulator emulates HID device which can be con-
trolled by the attacker.

• Single Board Computer processes the video stream from
the victim via the Video Capture Card or sends commands
to the victim via HID Emulator.

• Wi-Fi/GSM Module transmits the sensitive data or re-
ceives commands to/from the remote attacker PC.

HID Emulation Mode. This mode mainly relies on the
“HID Emulator” in Figure 3 to send constructed HID packets

1 Victim’s Devices 2 BADUSB-C
3 Attacker’s Remote PC

Fig. 3: Attack Model.

to the victim. These constructed HID packets are interpreted
by the victim as valid keystrokes and mouse movements. Thus,
attackers can execute arbitrary scripts on the victim’s device.
This is the function of BadUSB. Based on this, we made the
following improvements.

First, as BADUSB-C has established a feedback channel
using USB 3.x protocol, when performing keystroke and
mouse movements injection, an attacker can obtain real-time
feedback from the victim’s device. This feedback allows an
attacker to tell whether the previous attack succeeded and
decide what to perform next. Existence of such a feedback
channel largely strengthens the attack ability of BADUSB-C.

Moreover, as the mouse relies on the visual feedback to
work properly, its emulation and automation were not sup-
ported by the original version of BadUSB. Yet with the video
output support from USB 3.x, our BADUSB-C implements
a fully-functional mouse emulation. This function enables
attacks toward pure GUI programs and shows potential in the
mobile attack scenarios. Details can be obtained in Section V.

5

The advantage of this mode is that it achieves attack
feedback with video streaming. Also, with mouse supported,
BADUSB-C extends the original BadUSB attack and results
in further attacks.

Video Capture Mode. BADUSB-C under this mode does
not emulate other USB device and solely relies on the video
stream function of USB 3.x; it uses the “Video Capture”
component as shown in the Figure 3 to transmit the stream to
the embedded “Single Board Computer”. The victim’s device
mistakenly treats BADUSB-C as an external monitor and
output its video stream. This stream is later processed by the
embedded computer to extract sensitive data.

When running in this mode, BADUSB-C passively pro-
cesses the victim’s video stream and detects “valuable” pri-
vate data. The data is considered as “valuable” or not by a
customized detector. We implemented a simple payment code
detector for the proof-of-concept purpose, which demonstrates
that we successfully transfered money from a victim to an
attacker. More detail can be obtained in Section V.

It is worth mentioning that BADUSB-C under this mode
is completely passive, making it hard to be detected. With
different detectors implemented, BADUSB-C under this mode
is capable of serving more purposes.

Full Control Mode. In BADUSB-C, we have implemented
all components required to control a computer/mobile device
completely, including a video stream and a keyboard/mouse
emulation. Thus with all components enabled, not only does
the victim’s device treat BADUSB-C as an external display,
but also a valid HID input source. Hence we can achieve
complete hijack of the victim’s device.

BADUSB-C under this mode follows a simple logic.
BADUSB-C receives video stream from the victim’s de-
vice and redirects it to the attacker via GSM/WiFi. In the
meanwhile, BADUSB-C also receives keystrokes and mouse
movements from the attacker through GSM/WiFi and replays
them to the victim’s device by the USB emulation.

This mode enables attackers to perform delicate operations
that are beyond automation. Moreover, this mode provides a
backdoor that does not require a host network and thus is
undetectable by the firewall running on the host machine.

The advantage of this mode is that it can completely hijack
the victim’s device and provides a backdoor beyond detection
of firewalls; however, this complete control also comes with
the price of high power consumption and risk of being detected
by the user.

V. EXPERIMENT

To evaluate the effectiveness of BADUSB-C in different
modes, we conducted three experiments on BADUSB-C using
devices with USB Type-C capabilities from different OEMs,
including a mobile phone, a tablet, and a laptop.

Setup. As mentioned in Section IV, our BADUSB-C only
requires common components that are easy to access online
or in any electronic store. Here we chose the following parts
to build a prototype. To begin with, we chose the Raspberry
Pi 4B [55] as the embedded Single Board Computer inside

A Victim’s Device B BADUSB-C
1 USB 3.x Hub 2 Raspberry Pi 4B
3 Auxiliary Power Bank 4 Video Capture
5 ATMEGAA32U4 Board

Fig. 4: BADUSB-C Prototype.

BADUSB-C, which is powerful enough to process video data
and has an onboard WiFi chip. As for the HID Emulator, we
used an Atmel ATMEGA32U4 board [56] with USB protocol
support, which is able to emulate multiple HIDs with our
modified firmware. About the USB 3.x Hub, we used one from
UGREEN [57], which supports HDMI, USB 2.0, and many
other exported peripherals. Apart from these essential parts, we
also used an auxiliary power bank to provide power for the
Raspberry Pi and the mobile devices used by the victim. The
image of our BADUSB-C prototype can be found in Figure 4.

A is a HUAWEI mobile phone, the victim’s device; B

is a compact look of BADUSB-C prototype; 1 is the USB
3.x Hub; 2 is a Raspberry Pi 4B as the Single Board
Computer; 3 is an auxiliary power bank; 4 is the Video
Capture Card; 5 is an Atmel ATMEGA32U4 board as the
HID Emulator.

A. Attack Initialization

After the BADUSB-C is plugged into the victim’s device,
there is an initialization process to make sure the BADUSB-C
is able to carry out subsequent attacks.

• Screen Mirroring: During our experiment, we noticed
that some devices did not mirror their main displays to
our BADUSB-C by default. In this case, BADUSB-C
would inject a series of keystrokes to mirror the vic-
tim’s primary display. On both Windows 10 and Ubuntu
(Gnome Desktop), BADUSB-C can inject “Win+P” (the
“Win” key is the “Super” key on Windows and Ubuntu
by default) to switch the display modes for the external
display. Figure 5 illustrates how these keystrokes work
on Ubuntu, similar to that on Windows 10. On MacOS,
according to the official manual [58], BADUSB-C can
inject “Command+F1” keystrokes to mirror the victim’s
primary display. In EMUI, there is a special mode called
“Desktop Mode” that allows users to use their smart-
phones as desktop computers with external displays. If

6

this mode is enabled, since the victim’s “desktop” can
be obtained, BADUSB-C can inject mouse movements
to switch to mirror mode.

Fig. 5: Switching Display Mode on Ubuntu.

• Dismiss Notification: In our experiment, we found that
some devices would notify the user of the presence of an
external display. During our experiment, the following
notifications were raised:
– On Lenovo Xiaoxin Pro 13, it raised a pop-up asking

user to choose the functionality of the external display.
– On HUAWEI P30, it showed a status bar indicator and

a persistent notification about the external display.
– On iPad Pro (the third generation), if iPad is locked, it

also showed a blue status bar indicator and a notifica-
tion about USB accessories.

To avoid being discovered by the victim, BADUSB-C
can inject keystrokes and mouse movements to eliminate
some of these notifications. For example, in the first
case, BADUSB-C is able to inject a series of mouse
movements to set the display to mirror mode, thereby
eliminating the pop-up.

B. HID Emulation Mode

In the experiment of HID emulation mode, we used
Lenovo Xiaoxin Pro 13 2020, a PC with Windows 10
(OS Build 18363.1379) and Ubuntu 20.04.2 LTS with two
USB Type-C interfaces as the target devices. During this
experiment, BADUSB-C disguised itself as a normal keyboard
and an external display as a feedback channel. When first
plugged in, the victim’s device raised a pop-up window
asking the victim which mode should the new screen be
set to. BADUSB-C immediately injected a series of mouse
movements and clicks to set itself as a mirror to the primary
display. Thus we had successfully completed the attack ini-
tialization. Then we tested three scripts, ranging from reverse
shell backdoor to malware payload execution, all of them
resulted in success. Compared with original BadUSB attacks
like Rubber Ducky, our BADUSB-C can provide attackers
real-time feedback, which allows attackers to conduct more
accurate attacks.

C. Video Capture Mode

During the experiment of privacy extraction via our
video capture mode, we chose HUAWEI P30 (ELE-AL00),
a smartphone in EMUI 11.0.0.135(C00E128R2P5)
(Android 10.0 based) with a USB Type-C interface, as

the target device. In the privacy extraction experiment,
BADUSB-C passively captured video from the victim’s
device and used OpenCV to identify the sensitive information
from the video stream. When the victim viewed text or
photos with text, BADUSB-C used the techniques of
Optical Character Recognition (OCR) to extract text from
corresponding video frames. In this experiment, the attacker
successfully extracted text such as name, address, ID number,
and other sensitive personal information. We also tested the
payment code extractor, which enables an attacker to identify
payment code in the video stream and performs transactions
without the password. During our experiment, we noticed
that this HUAWEI device supports “Desktop Mode” for its
external display, which enable users to use their devices
as if they were using a computer with an external display.
If BADUSB-C is set into this mode, BADUSB-C is able
to inject mouse movements to set itself into mirroring the
primary display, as we discussed in Section V-A. As this is
also a part of our case study, more details about the extracted
sensitive data can be found in Section V-E and Table III.

Note that the video capture mode only needs to process the
victim’s video stream locally, it does not need to transmit the
real-time video back to the attacker, which is useful when the
network connection between BADUSB-C and the attacker is
not stable.

D. Full Control Mode

To test the capability of the full control mode, we chose
iPad Pro (3rd generation), a tablet running iOS 14.4 (Build
18D52) with a USB Type-C interface, as the target device in
this experiment. In addition to disguising themselves as normal
HIDs like a conventional BadUSB [3], BADUSB-C also
transmitted the real-time video stream from the target device
to the attacker via WiFi. After establishing the connection,
the attacker performed a series of actions to test the capability
of BADUSB-C. In the beginning, the attacker accessed the
album application on the iPad and obtained all the photos
inside. After that, the attacker sent messages via the victim’s
account. At last, the attacker performed a transaction using a
financial application. All of these tests resulted in success.

Through this experiment, we have found that with video
transmission and mouse emulation, BADUSB-C extensively
expanded the attack capability of BadUSB, especially in
mobile devices. In short, we have achieved the complete hijack
of the victim’s device in this experiment.

E. Case study

BADUSB-C can be used in various attack scenarios,
ranging from mobile devices to PC devices. For example,
BADUSB-C can be attached to the power station, which
provides USB 3.x hubs, in the airport to perform attacks.
Most people charge laptops or smartphones in the power
station in emergency, with negligence of security. In the
following paragraphs, we will demonstrate the attack scenarios
of BADUSB-C using sharing power bank as an example.

7

Fig. 6: Two Power Bank Stations.

1) Background: We first introduce the technical back-
ground of our case study, sharing power banks and QR code
payment.

Sharing Power Banks. Sharing power banks provides users
with short-term rental of power banks. The company deploys
power bank stations in the city and users can rent a power
bank from any of the power bank stations, charge their device
on the trip, return the rented power bank to the near stations,
and pay the rental fee.

Power bank sharing is a popular service in Asia, power bank
stations are deployed in markets, stores, and even newsstands.
For example, Figure 6 are photos of two power bank stations in
China, which are taken outside of a supermarket. Brick [59] is
also such a power bank sharing service provider from Sweden.
It provides power bank rental service all over Sweden and is
planning on expanding its service to entire Europe.

Sharing power banks bring convenience but also security
issues. We noticed that most of the power bank stations do
not check the integrity of the power bank during the rental
process, and users rarely check the power banks carefully
when connecting the power bank to their devices. An attacker
can tamper with a rented power bank and return it to a power
bank station, thereby posing a potential threat to subsequent
users.

QR Code Payment. QR code payment is a new pay-
ment method popular in Asia. The most famous cases are
WeChat Pay [60] and Alipay [61]. QR code payment provides
merchants and customers with a convenient offline payment
method while ensuring equivalent security as credit cards.
As illustrated in Figure 7, QR code payments are typically
performed in the following steps: (1) The customer shows the
QR payment code to the merchant on the mobile device. The
QR code is encoded with a globally unique ID to identify the
customer’s account. (2) The merchant scans the QR payment
code and charges the corresponding amount. By showing this
QR code, the customer authorizes the proceeding transaction.
(3) After confirmation, the payment service provider proceeds
with this transaction and returns the payment result to both
the merchant and the customer.

Next, we explain a payment method called micropayment.
A micropayment is pre-determined by the payment service
provider according to the threshold in the user agreement.
In the real world, payment service providers use different

Fig. 7: Bar/QR Code Payment Procedure.

rules for micropayment purchases. For example, WeChat
Pay [60] treats transactions under US$154 as micropayments.
Different from the typical payment procedure, when marking
micropayments, confirmations can be automatically applied
without the customer’s permission, which aims to provide
convenience for both merchant and customer. If the victim’s
payment code is leaked to the attacker, the attacker can use the
code to authorize multiple micropayments without permission.
In order to prevent this situation, both WeChat Pay [60]
and Alipay [61] have designed a mechanism to refersh the
payment code every minute. This is sufficient to prevent
attacks like opportunistic theft of a payment code, but cannot
prevent real-time attacks like our BADUSB-C. In summary,
the QR payment code is highly sensitive on users’ devices. Th
following case study is about how to use an attacker-crafted
power bank via BADUSB-C to obtain this code.

2) Attack Scenario: In this part, we will introduce a real-
life attack scenario to show that our BADUSB-C is a practical
offensive tool. This scenario can be broken down into the
following steps.

I. The attacker rents a power bank from one of the power
bank stations and replaces the internal components with
BADUSB-C.

II. After the modification, an attacker-crafted power bank is
returned to the rental station in crowded areas like airports
or railway stations, which increases the probability of
success.

III. A user borrows the modified power bank and connects it
to his/her own device, becoming a victim of BADUSB-C.

IV. The attacker can now fully control the victim’s device
and can use different modes for various attacks.

Next, we summarize the possible threats toward the victim
under different modes. First, under HID emulator mode, the
attacker is able to implant malware and backdoor scripts into
the victim’s device. Moreover, using video capture mode,
once the victim accesses his/her sensitive data such as QR
payment code or photos, the sensitive data will be immediately
transmitted to the attacker via BADUSB-C. Lastly, with full
control mode, the attacker can completely control over the
victim’s device and can perform any operations on the victim’s

8

device.
3) Experiment: We conducted experiments to further val-

idate the capabilities of BADUSB-C in the attack scenario
introduced in Section V-E2. 11 applications were selected and
tested on HUAWEI P30 (ELE-AL00) step by step: (1) Login
in with a test account. (2) Keep the default settings. (3) Attach
attacker’s BADUSB-C to the test device. (4) Simulate victim’s
daily usage of the application.

During this experiment, we tested full control mode which
actively obtained sensitive information and video capture mode
which passively obtained the sensitive information visited by
the victim. We noticed that, most sensitive information could
be obtained directly through full control mode without victim’s
interaction, but there was also certain information that had
to be obtained passively through video capture mode. For
example, as illustrated in Table III, in most applications,
information like “Account” can be obtained directly while
information like “Payment Password” cannot be obtained until
the victim inputs his/her password.

4) Result: In summary, BADUSB-C is able to actively
obtain most sensitive information from the screen, such as
browsing history, personal account, phone number without
victim’s interaction. There also exists information such as
payment password that is not available immediately, but such
a piece of information can be obtained once the victim inputs
it. The obtained information can be used to guess the victim’s
lock screen password and poses further threat to victim’s
privacy.

VI. COUNTERMEASURES

Next, we discuss our recommended countermeasures against
BADUSB-C.

External Hardware Authorization. One possible coun-
termeasure is to introduce external hardware completing the
authorization process. For example, USBCheckIn [62] adopts
a dedicated hardware between the host and device. When a
device is plugged-in, the authorization will be conducted on
the dedicated hardware instead of the internal display, prevent-
ing the host from being hijacked. Although USBCheckIn is an
adequate defense against BADUSB-C, the external hardware
brings additional cost and inconvenience, especially for mobile
devices.

Distrust-by-Default. Most security issues of USB protocol
are due to its trust-by-default assumption; BADUSB-C also
relies on this feature to work. To defend against BADUSB-C
and other USB-based attacks, we can simply reject all unau-
thorized devices – applying the distrust-by-default policy. For
example, in GoodUSB [5], all USB devices are enabled with
corresponding functionality only after being authorized by
the user. Defense like USB Condom distrusts all types of
USB devices by blocking data channels and stopping all
USB functions other than charging. Such defense methods
effectively stop attacks like BADUSB-C.

Isolated UI Rendering. During our experiments, we no-
ticed that BADUSB-C is actually unable to mirror the lock
screen keyboard from the iPad OS. Instead, the keyboard is

Fig. 8: Isolated UI Rendering

only available on the internal display. However, this defense
is only enabled on the lock screen keyboard, other keyboards
(e.g., the virtual ones used by the apps) are still vulnerable
to our BADUSB-C. This mechanism has inspired us to pro-
pose a new defense against our BADUSB-C called Isolated
UI Rendering. As illustrated in Figure 8, we designed two
separated UI render layers and corresponding drivers, one is
secure the another is insecure. When an application requires
to render, it can pass the content along with a tag identifying
whether the content is “sensitive” or not. If the content is
tagged with “sensitive”, then the OS could only render it on
the secure layer, which only shows the sensitive content (e.g.,
a keyboard) on the trusted screen. For the rest of the rendering,
it would render on both the trusted and untrusted display (e.g.,
insensitive contents). For example, in Figure 8, the “password”
and “keyboard” are recognized as sensitive while other parts of
content are insensitive. Thus, the “password” and “keyboard”
are not rendered on untrusted screen.

VII. DISCUSSION

A. Limitation

There exist multiple limitations of BADUSB-C. To begin
with, when BADUSB-C is attached, the victim’s device may
not be set to mirror the screen. Depending on the victim’s
settings, the BADUSB-C may be used as an extended monitor
or be set to ‘Desktop Mode’ or not be enabled at all. Though
we proposed the attack initialization in Section V-A to inject
keystrokes to ensure BADUSB-C is mirroring primary screen.
But without knowing the exact operating system of the victim’s
device, BADUSB-C may have to try multiple injections before
successfully mirroring the screen. Moreover, as mentioned in
Section V, BADUSB-C cannot directly obtain the information
on the lock screen. Apart from that, we also noticed that
in most devices, when an external monitor is connected to
the device, there will be notifications about the monitor.
In iPad, there is a small blue icon in the notification bar.
In Windows 10, there is a pop-up for user to select the
functionality of the external monitor. In latter case of a pop-
up, BADUSB-C can dismiss it by injecting keystrokes as
described in Section V-A. But they are still noticeable by
the victim. Also, it cannot be ignored that DisplayPort over

9

Category Application
Leaked Sensitive Information

Without Victim’s Interaction With Victim’s Interaction
Social & Finance App WeChat (8.0.1) Account, Financial Status, Chat History, Payment Code Payment Password

Social App
WhatsApp (2.21.5.18) Account, Contacts, Chat History, Phone Number <None>

Facebook (309.0.0.47.119) Account, Posts, Contacts <None>

Finance App
Alipay (10.2.15.9500) Account, Financial Status, Payment Code Payment Password

Cash App (3.35.1) Email, Phone Number, Cash Balance Payment Password
Paypal (7.38.1) Account, PayPal Balance Payment Password

Shopping App Amazon Shopping (22.6.0.100) Account, Orders, Shopping Cart <None>

Tool
Chrome (89.0.4389.72) Browsing History <None>

Health (11.0.5.508) Personal Health Metrics <None>

System
Messages (11.0.1.430) Contacts, Chat History <None>

Settings (11.0.0.300) - WiFi WiFi SSID WiFi Password
Settings (11.0.0.300) - VPN VPN Address, VPN Account, VPN Password <None>

TABLE III: Sensitive Information Leaked From Applications.

USB Type-C is not available on all devices. When selecting
devices to test BADUSB-C, we find that many smartphones
equipped with USB-C connectors actually do not support
USB 3.x protocol. There is an incomplete list of devices that
support DisplayPort over USB Type-C [6]. Most vendors like
HUAWEI and Samsung tend to support USB 3.x protocol in
their high-end smartphones. But there also exists vendors like
Xiaomi who does not support USB 3.x protocol at all.

B. Impact

The USB protocol is used widely as introduced in the
preceding sections. As the technologies develop rapidly, more
and more devices will be equipped with USB-C capabili-
ties [27], which makes BADUSB-C more influential. Since
non-professional users may neglect checking the security of
plug-in USB devices, they may unaware of the attacks from
BADUSB-C. can be hardly detected by them while attacks are
performing. The popularity and universality of public USB
devices, including sharing power banks, even increase such
risks. Moreover, BADUSB-C provides a better way for tradi-
tional BadUSB attacks, since attackers can obtain the screen
streaming with ease. Attackers can use such technologies to
perform more precise attacks, such as interacting with the user
interface and controlling the consequences of their attacks. In
summary, BADUSB-C can be applied in various application
scenarios and brings rather huge impacts.

VIII. CONCLUSION

Leveraging the new features of USB 3.x [11]–[13], we
explore a new attack scheme named BADUSB-C and three
attack modes. Each of these three modes has its own strength
and use scenarios. The HID emulation mode largely extends
the original BadUSB. The video capture mode proved practical
and powerful, as it extracts victim’s sensitive information in
a stealthy way. The full control mode achieves the complete
hijack of the target device, allowing us to perform various
types of subsequent attacks. By experimenting BADUSB-C
with mobile phones, tablets, and PCs, we further test its
ability under different modes. In our experiment, we obtain

and analyze video stream extracted from 11 applications with
BADUSB-C, which demonstrates its capability in a simulated
real-life scenario. In the end, we propose a new defense
scheme named isolated UI rendering, which can effectively
stop attacks with BADUSB-C. As for future work, we will
further explore the potential of isolated UI rendering and
implement it on a customized operating system. Moreover,
we also hope to lower the power consumption for network
transmission in BADUSB-C to make it more practical.

IX. RESPONSIBLE DISCLOSURE

Responsible disclosure have already been carried out, we
have contacted HUAWEI and Apple through proper channels.
We received response from HUAWEI on March 7th and
discussed the mitigation plan on March 10th while Apple
has not responded yet. HUAWEI security team has confirmed
this issue and been working on mitigation. We are actively
facilitating their mitigation process and waiting for a fix to
be deployed. After the mitigation is deployed, HUAWEI will
assign a CVE ID for this vulnerability.

X. ACKNOWLEDGEMENT

We are very grateful to our shepherd, Michael Schwarz,
and the anonymous reviewers for their valuable feedback that
improved the paper.

REFERENCES

[1] J. D. Tian, N. Scaife, D. Kumar, M. Bailey, A. Bates, and K. R. B.
Butler, “Sok: "plug & pray" today - understanding USB insecurity
in versions 1 through C,” in 2018 IEEE Symposium on Security
and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA. IEEE Computer Society, 2018, pp. 1032–1047.
[Online]. Available: https://doi.org/10.1109/SP.2018.00037

[2] “Common vulnerabilities and exposures,” 2020. [Online]. Available:
https://cve.mitre.org/

[3] K. Nohl and J. Lell, “Badusb-on accessories that turn evil,” Black Hat
USA, vol. 1, no. 9, pp. 1–22, 2014.

[4] USB-IF, “Device class definition for human interface devices (HID),”
2001.

[5] J. D. Tian, A. Bates, and K. R. B. Butler, “Defending against malicious
USB firmware with goodusb,” in Proceedings of the 31st Annual
Computer Security Applications Conference, Los Angeles, CA, USA,
December 7-11, 2015. ACM, 2015, pp. 261–270. [Online]. Available:
https://doi.org/10.1145/2818000.2818040

10

https://doi.org/10.1109/SP.2018.00037
https://cve.mitre.org/
https://doi.org/10.1145/2818000.2818040

[6] EverybodyWiki, “List of devices with video output over usb-c,”
2021. [Online]. Available: https://en.everybodywiki.com/List_of_
devices_with_video_output_over_USB-C#Devices_with_DisplayPort_
Alternate_Mode_over_USB-C

[7] Compaq, D. E. Corporation, I. P. Company, Intel, Microsoft, NEC, and
N. Telecom., Universal Serial Bus Specification, Revision 1.0, January
1996.

[8] ——, Universal Serial Bus Specification, Revision 1.1, September 1998.
[9] ——, Universal Serial Bus Specification, Revision 2.0, April 2000.

[10] Hak5, “Episode 709: Usb rubber ducky part 1,” 2013. [Online].
Available: http://hak5.org/episodes/episode-709

[11] I. HP et al., “Universal serial bus 3.0 specification,” 2008.
[12] ——, “Universal serial bus 3.1 specification,” 2013.
[13] I. M. R. S. Apple, Hewlett-Packard and T. Instruments., “Universal serial

bus 3.2 specification,” 2017.
[14] G. Chandler et al., Universal Serial Bus Type-C Cable and Connector

Specification.
[15] “USB implementers forum,” 1995. [Online]. Available: https://www.

usb.org/about/
[16] USB-IF, “USB-IF statement regarding USB security,” 2014.
[17] P. Szor, “Duqu–threat research and analysis,” McAfee Labs, 2011.
[18] W. Meng, L. W. Hao, M. S. Ramanujam, and S. P. T. Krishnan,

“Charging me and I know your secrets!: Towards juice filming attacks
on smartphones,” in Proceedings of the 1st ACM Workshop on Cyber-
Physical System Security, CPSS 2015, Singapore, Republic of Singapore,
April 14 - March 14, 2015, J. Zhou and D. Jones, Eds. ACM, 2015, pp.
89–98. [Online]. Available: https://doi.org/10.1145/2732198.2732205

[19] W. Meng, L. W. Hao, Z. Liu, C. Su, and Y. Li, “Evaluating the
impact of juice filming charging attack in practical environments,” in
Information Security and Cryptology - ICISC 2017 - 20th International
Conference, Seoul, South Korea, November 29 - December 1, 2017,
Revised Selected Papers, ser. Lecture Notes in Computer Science,
H. Kim and D. Kim, Eds., vol. 10779. Springer, 2017, pp. 327–338.
[Online]. Available: https://doi.org/10.1007/978-3-319-78556-1_18

[20] GoodFET, “Facedancer21,” 2016. [Online]. Available: http://goodfet.
sourceforge.net/hardware/facedancer21

[21] Google, “Found linux kernel usb bugs,” 2017. [Online].
Available: https://github.com/google/syzkaller/blob/master/docs/linux/
found_bugs_usb.md

[22] A. D. Ramadhanty, A. Budiono, and A. Almaarif, “Implementation and
analysis of keyboard injection attack using usb devices in windows
operating system,” in 2020 3rd International Conference on Computer
and Informatics Engineering (IC2IE), 2020, pp. 449–454.

[23] J. Bang, B. Yoo, and S. Lee, “Secure usb bypassing tool,” digital
investigation, vol. 7, pp. S114–S120, 2010.

[24] M. Brocker and S. Checkoway, “iseeyou: Disabling the macbook
webcam indicator LED,” in Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20-22,
2014, K. Fu and J. Jung, Eds. USENIX Association, 2014,
pp. 337–352. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/brocker

[25] S. Kamkar, “Usbdriveby.” 2014. [Online]. Available: http://samy.pl/
usbdriveby/

[26] MHL, “Mhl devices,” 2021. [Online]. Available: http://www.mhltech.
org/devices.aspx?tid=1

[27] A. Li, “Usb type-c for machine vision,” Quality, pp. 16VS–17VS, 2018.
[28] K. Zetter, “Meet flame,the massive spy malware infiltrating iranian

computers,” Wired Magazine, 2012.
[29] H. J. Highland, “The brain virus: fact and fantasy,” Computers &

Security, vol. 7, no. 4, pp. 367–370, 1988.
[30] “Common vulnerabilities and exposures,” 2010. [Online]. Available:

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568,
[31] S. Shin and G. Gu, “Conficker and beyond: a large-scale empirical

study,” in Twenty-Sixth Annual Computer Security Applications
Conference, ACSAC 2010, Austin, Texas, USA, 6-10 December 2010,
C. Gates, M. Franz, and J. P. McDermott, Eds. ACM, 2010, pp.
151–160. [Online]. Available: https://doi.org/10.1145/1920261.1920285

[32] Z. Wang and A. Stavrou, “Exploiting smart-phone USB connectivity for
fun and profit,” in Twenty-Sixth Annual Computer Security Applications
Conference, ACSAC 2010, Austin, Texas, USA, 6-10 December 2010,
C. Gates, M. Franz, and J. P. McDermott, Eds. ACM, 2010, pp.
357–366. [Online]. Available: https://doi.org/10.1145/1920261.1920314

[33] ——, “Exploiting smart-phone USB connectivity for fun and profit,”
in Twenty-Sixth Annual Computer Security Applications Conference,

ACSAC 2010, Austin, Texas, USA, 6-10 December 2010, C. Gates,
M. Franz, and J. P. McDermott, Eds. ACM, 2010, pp. 357–366.
[Online]. Available: https://doi.org/10.1145/1920261.1920314

[34] K. Sridhar, S. Prasad, L. Punitha, and S. Karunakaran, “Emi issues of
universal serial bus and solutions,” in 8th International Conference on
Electromagnetic Interference and Compatibility. IEEE, 2003, pp. 97–
100.

[35] A. Davis, “Revealing embedded fingerprints: Deriving intelligence from
usb stack interactions,” Blackhat USA, 2013.

[36] Y. Su, D. Genkin, D. C. Ranasinghe, and Y. Yarom,
“USB snooping made easy: Crosstalk leakage attacks on USB
hubs,” in 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017, E. Kirda
and T. Ristenpart, Eds. USENIX Association, 2017, pp.
1145–1161. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/su

[37] mich., “Inside a low budget consumer hardware espionage implant.”
2017. [Online]. Available: https://ha.cking.ch/s8datalinelocator

[38] A. Bates, R. Leonard, H. Pruse, D. Lowd, and K. R. B.
Butler, “Leveraging USB to establish host identity using
commodity devices,” in 21st Annual Network and Distributed
System Security Symposium, NDSS 2014, San Diego, Cali-
fornia, USA, February 23-26, 2014. The Internet Society,
2014. [Online]. Available: https://www.ndss-symposium.org/ndss2014/
leveraging-usb-establish-host-identity-using-commodity-devices

[39] K. Nohl, “Badusb exposure: Hubs,” 2014. [Online]. Available:
https://opensource.srlabs.de/projects/badusb/wiki/Hubs

[40] L. Letaw, J. Pletcher, and K. R. B. Butler, “Host identification via
USB fingerprinting,” in 2011 IEEE Sixth International Workshop on
Systematic Approaches to Digital Forensic Engineering, SADFE 2011,
Oakland, CA, USA, May 26, 2011, R. F. Erbacher, R. H. Campbell,
and Y. Guan, Eds. IEEE Computer Society, 2011, pp. 1–9. [Online].
Available: https://doi.org/10.1109/SADFE.2011.9

[41] D. F. Oswald, B. Richter, and C. Paar, “Side-channel attacks on
the yubikey 2 one-time password generator,” in Research in Attacks,
Intrusions, and Defenses - 16th International Symposium, RAID 2013,
Rodney Bay, St. Lucia, October 23-25, 2013. Proceedings, ser. Lecture
Notes in Computer Science, S. J. Stolfo, A. Stavrou, and C. V. Wright,
Eds., vol. 8145. Springer, 2013, pp. 204–222. [Online]. Available:
https://doi.org/10.1007/978-3-642-41284-4_11

[42] M. Guri, M. Monitz, and Y. Elovici, “Usbee: Air-gap covert-channel
via electromagnetic emission from USB,” in 14th Annual Conference
on Privacy, Security and Trust, PST 2016, Auckland, New Zealand,
December 12-14, 2016. IEEE, 2016, pp. 264–268. [Online]. Available:
https://doi.org/10.1109/PST.2016.7906972

[43] TURNIPSCHOOL, “Nsa playset.” [Online]. Available: http://www.
nsaplayset.org/turnipschool

[44] “Usbkiller,” 2016. [Online]. Available: https://www.usbkill.com/
[45] INT3.CC, “The original usb condom,” 2018. [Online]. Available:

https://int3.cc/collections/usb/products/usbcondoms
[46] Microsoft, “How to control usb devices and other removable

media using microsoft defender for endpoint,” 2018. [Online].
Available: https://docs.microsoft.com/en-us/windows/security/
threat-protection/device-control/control-usb-devices-using-intune#
prevent-installation-of-specifically-prohibited-peripherals

[47] H. Mohammadmoradi and O. Gnawali, “Making whitelisting-based
defense work against badusb,” in Proceedings of the 2nd International
Conference on Smart Digital Environment, ICSDE 2018, Rabat,
Morocco, October 18-20, 2018, F. E. Bouanani and A. Habbani, Eds.
ACM, 2018, pp. 127–134. [Online]. Available: https://doi.org/10.1145/
3289100.3289121

[48] B. Yang, Y. Qin, Y. Zhang, W. Wang, and D. Feng, “TMSUI:
A trust management scheme of USB storage devices for industrial
control systems,” in Information and Communications Security -
17th International Conference, ICICS 2015, Beijing, China, December
9-11, 2015, Revised Selected Papers, ser. Lecture Notes in Computer
Science, S. Qing, E. Okamoto, K. Kim, and D. Liu, Eds.,
vol. 9543. Springer, 2015, pp. 152–168. [Online]. Available:
https://doi.org/10.1007/978-3-319-29814-6_13

[49] A. Kharraz, B. L. Daley, G. Z. Baker, W. Robertson, and E. Kirda,
“USBESAFE: an end-point solution to protect against usb-based
attacks,” in 22nd International Symposium on Research in Attacks,
Intrusions and Defenses, RAID 2019, Chaoyang District, Beijing,

11

https://en.everybodywiki.com/List_of_devices_with_video_output_over_USB-C#Devices_with_DisplayPort_Alternate_Mode_over_USB-C
https://en.everybodywiki.com/List_of_devices_with_video_output_over_USB-C#Devices_with_DisplayPort_Alternate_Mode_over_USB-C
https://en.everybodywiki.com/List_of_devices_with_video_output_over_USB-C#Devices_with_DisplayPort_Alternate_Mode_over_USB-C
http://hak5.org/episodes/episode-709
https://www.usb.org/about/
https://www.usb.org/about/
https://doi.org/10.1145/2732198.2732205
https://doi.org/10.1007/978-3-319-78556-1_18
http://goodfet.sourceforge.net/hardware/facedancer21
http://goodfet.sourceforge.net/hardware/facedancer21
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/brocker
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/brocker
http://samy.pl/usbdriveby/
http://samy.pl/usbdriveby/
http://www.mhltech.org/devices.aspx?tid=1
http://www.mhltech.org/devices.aspx?tid=1
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568,
https://doi.org/10.1145/1920261.1920285
https://doi.org/10.1145/1920261.1920314
https://doi.org/10.1145/1920261.1920314
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/su
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/su
https://ha.cking.ch/s8 data line locator
https://www.ndss-symposium.org/ndss2014/leveraging-usb-establish-host-identity-using-commodity-devices
https://www.ndss-symposium.org/ndss2014/leveraging-usb-establish-host-identity-using-commodity-devices
https://opensource.srlabs.de/projects/badusb/wiki/Hubs
https://doi.org/10.1109/SADFE.2011.9
https://doi.org/10.1007/978-3-642-41284-4_11
https://doi.org/10.1109/PST.2016.7906972
http://www.nsaplayset.org/turnipschool
http://www.nsaplayset.org/turnipschool
https://www.usbkill.com/
https://int3.cc/collections/usb/products/usbcondoms
https://docs.microsoft.com/en-us/windows/security/threat-protection/device-control/control-usb-devices-using-intune#prevent-installation-of-specifically-prohibited-peripherals
https://docs.microsoft.com/en-us/windows/security/threat-protection/device-control/control-usb-devices-using-intune#prevent-installation-of-specifically-prohibited-peripherals
https://docs.microsoft.com/en-us/windows/security/threat-protection/device-control/control-usb-devices-using-intune#prevent-installation-of-specifically-prohibited-peripherals
https://doi.org/10.1145/3289100.3289121
https://doi.org/10.1145/3289100.3289121
https://doi.org/10.1007/978-3-319-29814-6_13

China, September 23-25, 2019. USENIX Association, 2019, pp. 89–
103. [Online]. Available: https://www.usenix.org/conference/raid2019/
presentation/kharraz

[50] T. Mueller, E. Zimmer, and L. de Nittis, “Using context and provenance
to defend against usb-borne attacks,” in Proceedings of the 14th
International Conference on Availability, Reliability and Security, ARES
2019, Canterbury, UK, August 26-29, 2019. ACM, 2019, pp. 1:1–1:9.
[Online]. Available: https://doi.org/10.1145/3339252.3339268

[51] S. Neuner, A. G. Voyiatzis, S. Fotopoulos, C. Mulliner, and E. R.
Weippl, “Usblock: Blocking usb-based keypress injection attacks,” in
Data and Applications Security and Privacy XXXII - 32nd Annual IFIP
WG 11.3 Conference, DBSec 2018, Bergamo, Italy, July 16-18, 2018,
Proceedings, ser. Lecture Notes in Computer Science, F. Kerschbaum
and S. Paraboschi, Eds., vol. 10980. Springer, 2018, pp. 278–295.
[Online]. Available: https://doi.org/10.1007/978-3-319-95729-6_18

[52] D. V. Pham, M. N. Halgamuge, A. Syed, and P. Mendis, “Optimizing
windows security features to block malware and hack tools on usb
storage devices,” in Progress in electromagnetics research symposium,
2010.

[53] W. Meng, L. Jiang, Y. Wang, J. Li, J. Zhang, and Y. Xiang, “Jfcguard:
Detecting juice filming charging attack via processor usage analysis on
smartphones,” Computers & Security, vol. 76, pp. 252 – 264, 2018.

[54] B. Leung, “Surjtechs 3m usb a-to-c cable completely violates the
usb spec. seriously damaged my laptop,” 2016. [Online]. Available:
https://www.amazon.com/review/R2XDBFUD9CTN2R

[55] R. P. Foundation, “Raspberry pi 4B,” 2019. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-4-model-b

[56] M. T. Incorporated, “ATmega32u4 chip,” 2016. [Online]. Available:
https://www.microchip.com/wwwproducts/en/ATmega32u4

[57] U. G. Limited, “UGREEN company introduction,” 2012. [Online].
Available: https://www.ugreen.com/pages/about-ugreen

[58] Apple, “Mac notebooks: Key placement and functions,” 2017. [Online].
Available: https://support.apple.com/en-us/HT201181

[59] Brick, “Brick,” 2019. [Online]. Available: https://brickapp.se/about-us/
[60] “WeChat Pay,” 2020. [Online]. Available: https://pay.weixin.qq.com/

index.php/public/wechatpay_en
[61] Alipay, “Alipay,” 2020. [Online]. Available: https://global.alipay.com/

platform/site/ihome
[62] F. Griscioli, M. Pizzonia, and M. Sacchetti, “Usbcheckin: Preventing

badusb attacks by forcing human-device interaction,” in 14th Annual
Conference on Privacy, Security and Trust, PST 2016, Auckland, New
Zealand, December 12-14, 2016. IEEE, 2016, pp. 493–496. [Online].
Available: https://doi.org/10.1109/PST.2016.7907004

12

https://www.usenix.org/conference/raid2019/presentation/kharraz
https://www.usenix.org/conference/raid2019/presentation/kharraz
https://doi.org/10.1145/3339252.3339268
https://doi.org/10.1007/978-3-319-95729-6_18
https://www.amazon.com/review/R2XDBFUD9CTN2R
https://www.raspberrypi.org/products/raspberry-pi-4-model-b
https://www.microchip.com/wwwproducts/en/ATmega32u4
https://www.ugreen.com/pages/about-ugreen
https://support.apple.com/en-us/HT201181
https://brickapp.se/about-us/
https://pay.weixin.qq.com/index.php/public/wechatpay_en
https://pay.weixin.qq.com/index.php/public/wechatpay_en
https://global.alipay.com/platform/site/ihome
https://global.alipay.com/platform/site/ihome
https://doi.org/10.1109/PST.2016.7907004

	Introduction
	Background
	Related Work
	USB Attacks
	USB Security Defenses

	BadUSB-C
	Threat Model
	Implementation
	Attack Model

	Experiment
	Attack Initialization
	HID Emulation Mode
	Video Capture Mode
	Full Control Mode
	Case study
	Background
	Attack Scenario
	Experiment
	Result

	Countermeasures
	Discussion
	Limitation
	Impact

	Conclusion
	Responsible Disclosure
	Acknowledgement
	References

