A Novel Memory Management for RISC-V Enclaves

Haonan Lil%*

, Weijie Huang"%*, Mingde Ren?®, Hongyi Lu’?, Zhenyu Ning"**4 Heming Cui?,

Fengwei Zhang?!
{lihn,huangwj2018,12150069,12132884}@mail.sustech.edu.cn,
ningzy@sustech.edu.cn,heming@cs.hku.hk,zhangfw@sustech.edu.cn
1Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology
2COMPASS Lab, Department of Computer Science and Engineering, Southern University of Science and Technology
3The University of Hong Kong

ABSTRACT

Trusted Execution Environment (TEE) is a popular technology to
protect sensitive data and programs. Recent TEEs have proposed
the concept of enclaves to execute code processing sensitive data,
which cannot be tampered with even by a malicious OS. However,
due to hardware limitations and security requirements, existing
TEE architectures usually offer limited memory management, such
as dynamic memory allocation, defragmentation, etc. In this paper,
we present ASHMAN—a novel software-based memory management
extension of TEE on RISC-V, including dynamic memory alloca-
tion, migration, and defragmentation. We integrate ASHMAN into a
self-designed TEE and evaluate the performance on a real-world de-
velopment board. Experimental results have shown that ASHMAN
provides memory management functions similar to native user
applications while ensuring enclave security without modifying
hardware.

CCS CONCEPTS

« Security and privacy — Systems security; Software security
engineering.

KEYWORDS

Memory Management, Enclave, RISC-V

ACM Reference Format:

Haonan Li%%*, Weijie Huang®%*, Mingde Ren®3, Hongyi Lu"?, Zhenyu
Ningl’z'g, Heming Cui®, Fengwei Zhang®'. 2021. A Novel Memory Man-
agement for RISC-V Enclaves. In Workshop on Hardware and Architectural
Support for Security and Privacy (HASP *21), October 18, 2021, Virtual, CT, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3505253.3505257

1 INTRODUCTION

It has been proved that OSs are not trustworthy for running sensi-
tive applications. Therefore, to resolve the urgent needs of trusted
computing, researchers and developers have proposed the concept

"Both authors contributed equally to this paper.
gZhenyu Ning is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HASP °21, October 18, 2021, Virtual, CT, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9614-1/21/10...$15.00
https://doi.org/10.1145/3505253.3505257

of Trusted Execution Environment (TEE) [1, 2, 6, 8, 12-14, 22, 24, 28—
30, 32]. Existing TEEs often offer enclaves to support applications
running isolated from the host OS [2, 8, 13, 14, 22, 24, 29]. Conse-
quently, users can easily develop enclave applications for trusted
computing or services. Intel SGX [2] provides a specific Software De-
velopment Kit (SDK) for developers to create applications. However,
the functionalities of enclave applications are limited in SGX; for
example, dynamic memory allocation is unavailable in SGXv1 [11,
17, 26]. Although SGXv2 [25] proposes a new mechanism to support
dynamic memory allocation, the lack of accessibility [21] reduces its
usability. Other existing TEEs offer a set of runtime libraries [22] or
even microkernels [8, 20] to allow standard Executable and Linkable
Format (ELF) files running as enclave applications. Unfortunately,
although the developers can build enclave applications without us-
ing specific SDKs, they still cannot provide full functionalities as a
native application (i.e., the application running on the host OS). One
of the most significant differences is memory management. Because
enclave memory isolation is an essential requirement for TEEs, ex-
isting TEEs [14, 22] rely on hardware primitives (e.g., TrustZone
Address Space Controller (TZASC) [23] on Arm and Physical Mem-
ory Protection (PMP) [3] on RISC-V) to ensure the memory isolation.
However, these hardware primitives can only provide isolation for
a limited number of segments of contiguous physical memory re-
gions. As a result, these TEEs cannot provide flexible and efficient
memory management since they depend on hardware primitives.

Nevertheless, continuous memory regions are expensive for en-
clave applications due to memory fragmentation, which refers to the
discontinuity between newly requested memory and the previously
allocated ones. Hence, TEEs have to use additional hardware prim-
itive configurations to protect the discontinuous memory regions.
As a result, once hardware primitives run out, the TEE cannot pro-
tect new memory regions. To address this challenge, Keystone [22]
enforces the enclave application to request for adjacent memory
only. However, in this case, the available memory for enclave appli-
cations is then affected by its neighbors. For example, if an enclave
application’s memory area is completely surrounded by two other
ones, it would not be able to request new memory. Moreover, the
hardware primitives also limit the number of concurrent enclave
applications. For example, Keystone needs to assign a set of PMP
entries to each enclave application, so the number of concurrent en-
clave applications is limited by the total number of PMP entries [22].
SANCTUARY [14], for another example, also has a limitation on
the maximum number of running enclaves due to the hardware
constraint of TZASC.

https://doi.org/10.1145/3505253.3505257
https://doi.org/10.1145/3505253.3505257

To address the memory management restriction, Penglai [16], for
example, modifies hardware ranter than utilize generic hardware
primitives to protect enclave memory. Nevertheless, significant
modifications to the hardware reduce its deployability. Furthermore,
our goal is to construct an extension for existing TEEs, and we
expect our solution to be based on generic hardware primitives
without hardware modifications.

In this paper, we propose a flexible and efficient memory man-
agement mechanism named ASHMAN as an extension for TEEs on
RISC-V. Based on the standard hardware primitives that protect
the enclave memory regions, ASHMAN provides memory allocation
and defragmentation algorithms for TEEs to manage memory. We
implement AsHMAN on top of our self-designed TEE Coffer [7] with
411 lines of code (LoC). Then we evaluate ASHMAN on an Allwinner
D1 Nezha development board [10] and QEMU emulation. The ex-
periment shows that Coffer can support more than 100 concurrent
enclaves with at least 149% improvement in memory utilization.

We summarize our contributions as:

e We break the constraint on the number of concurrent en-
claves due to the hardware-based memory protection mech-
anism. The experiment shows that ASHMAN supports hun-
dreds of concurrent enclaves without hardware modifica-
tions.

e We significantly increase the memory utilization of enclaves.
Random high-pressure memory allocation tests illustrate
that AsHMAN improves the utilization rate by at least 149%.

e We propose new algorithms of memory allocation and mem-
ory defragmentation with a low performance overhead. The
experiment with the RV8 benchmark [5] demonstrates that
AsHMAN introduces a 3.49% overhead in the worst case.

e We open-source our code of ASHMAN and experimental re-
sults on github.com/Compass-All/Ashman to facilitate fur-
ther research.

The rest of the paper is structured as follows: Section 2 pro-
vides the background and related work of memory management in
RISC-V and state-of-the-art TEEs. Section 3 introduces our design
of the proposed memory management approach. Implementation
details are listed in Section 4, and Section 5 shows the evaluation
results of the approach. Section 6 discusses other probabilities in
this approach and future work. The conclusion lies in Section 7.

2 BACKGROUND & RELATED WORK

2.1 RISC-V Security Mechanisms

2.1.1 RISC-V Privileges. The RISC-V standard [3] defines three
software privilege levels: User Mode (U-mode), Supervisor Mode
(S-mode), and Machine Mode (M-mode). Each processor can only
run under a particular privilege level at a time. The privilege levels
determine permissions for several operations, such as accessing
specific memory, manipulating certain registers, etc. In general,
user applications run in U-mode, the OS kernel or runtime lies in
S-mode, and the firmware resides in M-mode together with the
bootloader.

2.1.2 Physical Memory Protection (PMP). RISC-V introduces PMP
to control access to the physical address space. Specifically, a PMP

entry can be configured for a contiguous section of physical mem-
ory. The number of PMP entries is implementation-specific. For ex-
ample, SiFive U74-MC [31] supports 8 entries, whereas the generic
virtual platform on QEMU supports 16 entries [9].

2.2 Memory Management in Existing TEEs

Keystone [22] relies on Linux’s memory allocation mechanisms (i.e.,
Buddy Allocator and the Contiguous Memory Allocator) to create
and dynamically allocate the enclave memory regions. Each enclave
application is discretely located in memory and requires a separate
PMP entry to protect its memory area. Therefore, Keystone only
supports a limited number of enclave applications. Besides, once
an enclave is allocated, it cannot be migrated elsewhere by Linux.
Hence, if there is insufficient memory adjacent to the enclave, the
enclave application may fail to continue.

In the past few years, existing state-of-the-art TEEs have pro-
posed the following strategies to resolve the memory management
issues:

Additional address translation. vIZ [18] on Arm maintains an
additional translation in hypervisor mode to support intermediate
physical addresses (ipa) between virtual addresses (va) and physical
addresses (pa). This way, it can configure the ipa space to utilize both
contiguous memory protection in hardware and dynamic memory
management in TEE-kernel. However, the hypervisor extension in
RISC-V is not supported so far by real-world development boards.
Therefore, the approach cannot be applied to RISC-V machines.

Customized hardware. On enclave initialization, CURE [13] de-
pends on Contiguous Memory Allocator as well. The maximum size
of the enclave memory is fixed, and dynamic memory allocation for
enclaves is supported by either host OS (for User-space enclaves)
or the enclave’s own runtime (for Kernel-space enclaves). Mem-
ory accesses in CURE are controlled by modified arbiters on the
system bus. Due to the hardware limitations on the arbiter, CURE
can only support 13 enclaves concurrently with limited memory
management.

TIMBER-V [24] utilizes tagged memory, which extends memory
words with additional bits for metadata, to distinguish between the
normal and secure memory. Additionally, an enclave can interleave
normal memory regions to reduce memory fragmentation. By this
way, TIMBER-V is able to provide dynamic memory management
as well as unlimited number of concurrent enclaves. However, such
features are based on additional customized hardware primitives,
sacrificing the nativeness of enclave applications.

Penglai [16] also manages secure memory via the tagging mech-
anism. It relies on a modified allocator in Linux to manage host
OS memory and enclave memory in unit pages. To ensure strict
permission control, Penglai introduces self-designed registers and
page table walkers to distinguish between host and enclave pages,
bringing heavy modifications to hardware.

3 DESIGN

3.1 Overview

Figure 1 offers a brief overview of a generic TEE on RISC-V. The
S-mode runtime, isolated from the host OS, provides essential sup-
ports for enclave applications to execute. It also maintains page

Untrusted region

Enclaves

Ny ~
U-mode App | 7 | App | : Enclave Enclave
] App App
__________________ (775 Rpupupuyl SRR Rp—
1
S-mode Host OS | 7 Runtime Runtime
i
.................. £
M-mode | Security Monitor (SM) |
Figure 1: TEE Overview on RISC-V
l [Accessible [Inaccessible
§ o PMP [
£ gy —| : ;'—'5
£ | ewey | — - ; ' ‘]
l Host OS I I Host OS l l Host OS I l Host OS I

PMPo[—]

[_Hostos [TTIT]

Enclave 1 Enclave 2

[T

Enclave 3

Host OS

(a) Memory Access Management for Enclave Applications

PMP4
PMPg I
l :

[Hostos [TTIT]

Enclave 1 Enclave 2

:]
[TITTTTITIT Hostos |

Enclave 3

(b) Protecting All Enclaves in Host OS

Figure 3: AsHMAN’s Access Control in Different Scenarios

Enclave 1 Enclave 2 Enclave 3

Figure 2: Existing Solution: Protecting Enclaves by Multiple PMP
Entries in Host OS

tables for itself and the enclave application. The Security Moni-
tor (SM) runs in M-mode to configure memory for enclaves. It also
utilizes PMP to ensure memory isolation.

Our design principles are to provide a memory management
model for enclaves similar to that of native user applications. Thus,
we need to achieve the following goals beyond the essential require-
ments of security:

G1: Breaking the restriction on the number of concurrent
enclaves. Generally, a PMP entry can only protect a contiguous
memory region. As Figure 2 shows, the TEE protects each enclave
with a unique PMP entry when the processor lies in the host OS.
Therefore, the number of concurrent enclaves is limited by the
number of PMP entries. One of our goals is to provide a memory
management method to overcome the limit imposed by PMP.

G2: Making full use of physical resources for enclave mem-
ory support. Typically, a native user application may request mem-
ory resources at any time and can always obtain new memory re-
gions whenever resources are sufficient. Thus, we need a dynamic
memory allocation mechanism to satisfy the needs of enclave ap-
plications. Meanwhile, repeated allocations and deallocations may
cause external memory fragmentation leading to difficulties in
further allocation and unbearable memory waste. Therefore, an
efficient countermeasure against fragmentation is our goal as well.

3.2 Memory Access Control

We should take measures to manage enclave memory securely while
satisfying G1. That is, we need to ensure the isolation of enclaves
without limiting the number of concurrent enclaves.

The isolation of enclaves consists of two parts: 1) a running en-
clave only has access to its own memory regions, and 2) the enclave
memory should be invisible to the host OS. As Figure 3(a) demon-
strates, when an enclave is executing, we only need to configure one
PMP entry on its own memory region. In this way, the enclave can
only see its own memory, and any access to unconfigured memory
regions will be denied. When the processor is in the host OS, we
need to ensure the sufficient number of PMP entries. We enforce

[_Hostos [TTTITI [T L[Hostos]
[hHostos [[TTT] [TTTTITITTTTIITT [[[Hostos]
[_Hostos [[TTITI [T [[T Hostos]
[hostos [[TTTTITI [T [[Hostos]

Enclave 1 Enclave 2 Enclave 3

Figure 4: Multiple Migrations for Dynamic Memory Allocation

Memory
compaction

Adjacent memory’
available?
1 2 3
Expand enclave Allocate new Migrate the
memory fragment smallest fragment.

[l

Out of memory

Figure 5: Flow Chart of Memory Allocation Algorithm

the host OS not to occupy memory regions between enclaves so
that only one PMP entry is sufficient to protect all enclave mem-
ory. This approach naturally breaks restrictions on the number of
concurrent enclaves.

3.3 Dynamic Memory Allocation

3.3.1 Naive Solution. To fulfill the requirements of G2, we need to
make full use of PMP to utilize all memory regions for the host OS
and enclaves. According to Figure 3, there exist unused memory
regions between enclaves. To fully make use of these regions, we
introduce a defragmentation approach for enclave memory.

For the most straightforward intuition, suppose we can only use
one PMP entry to protect the physical memory of the enclave appli-
cation. It means that we must ensure that all memory in an enclave
is contiguous. Thus, all memory partitions are naturally used by
enclave applications. However, as Figure 4 shows, even if Enclave 1
only needs two partitions, all other enclaves may be migrated to
make room for the allocation. Note that each migration also requires
rebuilding the page table of the migrated partitions; the overhead
associated with frequent memory migrations is unacceptable.

Memory Pool
— —= m
Host OS Host OS
Host 0S [T Host 0S
Enclave 1 Enclave 2 Enclave 3 Enclave 4

(a) Sparse Memory Allocation

PMPo]

[Hostos] {I1T]

Enclave 1 Enclave 2

PMP1]

[T il

Enclave 3 Enclave 1

(b) Using Multiple PMP Entries for a Fragmented Enclave

Enclave 1 Enclave 2

Enclave 3 Enclave 4
[AT
(c) Lightweight Section Migration
Enclave 2 Enclave 2
[0 [T
Enclave 1 Enclave 3 Enclave 4
[Hostos [TTITTITITTIITILT]
[Hostos [TTITTITITTITTIIT] [T

Enclave 1

(d) Memory Compaction for Further Allocation

Figure 6: Strategies of Memory Allocation

3.3.2 Complete Solution. To reduce the overhead, we investigate
different cases of memory allocation carefully. The flow chart of
the whole process is illustrated in Figure 5, and the entire process
is depicted in Appendix A.

Case 1. Intuitively, if free adjacent memory is sufficient, ASHMAN
expands the enclave memory contiguously. Furthermore, to make
each enclave application’s surrounding more likely to be free, ASHMAN
allocates enclave memory regions sparsely in the reserved region,
which is shown in Figure 6(a).

Case 2. If AsuMAN finds that there is not enough free space adja-
cent to an enclave application, ASHMAN puts the requested memory
into any free area. In other words, AsumaN allows fragmented en-
clave memory and utilizes multiple PMP entries when the enclave
is running, as illustrated in Figure 6(b). We observe that in enclave
contexts, ASHMAN only needs to protect the running one, so multi-
ple PMP entries can be adopted to fulfill the protection for multiple
memory fragments. Therefore, AsHMAN allows fragments as many
as PMP entries for each enclave application.

Case 3. Further, when PMP entries run out, ASHMAN performs a
lightweight migration strategy that moves the smallest fragment
to a free memory region, as demonstrated in Figure 6(c). Note that
AsHMAN only migrates the smallest fragment to minimize overhead.
After the migration, the migrated fragment can expand the memory
in the new area, as states in Case 1. To maintain the sparsity of the

allocated regions, ASHMAN always chooses the largest free memory
region for migration. In addition, the migration destination will be
as close to the midpoint of the free memory as possible.

Case 4. Memory compaction is the rearrangement of memory for
all enclave applications. It happens when AsHMAN does not find
any available memory to perform Case 3. AsuMAN firstly identifies
whether memory compaction has been performed previously in
this allocation. A positive result indicates that there is no more
space available at this point; otherwise, ASHMAN performs memory
compaction.

Figure 6(d) depicts the process of memory compaction. In general,
AsHMAN moves all allocated memory to one side; therefore, all
possible free memory is merged to the other side. This way, all free
memory in the memory pool can be used for memory allocation.

4 IMPLEMENTATION

In this section, we describe the implementation of ASHMAN in terms
of two scenarios of memory allocation and migration. We integrate
AsHMAN into our self-designed TEE Coffer [7] and deploy it on a
real-world development board: Allwinner D1 Nezha board with
T-HEAD C906 single core and 2GB RAM. AsHMAN is implemented
on top of OpenSBI, which is the standard firmware for the RISC-V
platform. The version we are using is OpenSBI v0.9 [4].

4.1 Memory Allocation
4.1.1 Memory Initialization. At first, we need to reserve a physical
memory region for enclaves. To meet the isolation requirement,
we modify Linux’s memory allocator to exclude memory regions
for enclaves. Specifically, at Linux boot time, we set the migrate
type of most of the pages (i.e., all pages except those necessary for
Linux kernel) managed by Linux to MIGRATE_ISOLATE [27], which
enforces the Linux memory allocator not make use of these pages.
The SM manages the reserved memory as the enclave memory pool.
To minimize the impact to host OS brought by the TEE, we allow
Linux to utilize some of these pages temporarily. To be specific,
we modify Linux’s out-of-memory exception handler. When Linux
runs out of memory, it will try to request a memory section from
the SM. The SM checks whether the boundary section (i.e., the
boundary between the enclaves and the host OS) is occupied. If so,
the SM will perform memory migration, and the boundary section
is allocated to Linux. Finally, The SM releases the corresponding
PMP restriction so that Linux can access that memory region.

4.1.2 Memory Partition. The minimal memory management unit
in Linux is one-page large (i.e., 4KB in size). Here, we introduce
memory partition and increase the smallest memory management
unit to 8MB in size. This way, ASHMAN assigns at least 8MB large
memory for each allocation request. Although memory partition in-
troduces internal fragmentation, it significantly reduces the number
and overhead of free memory allocations and migrations.

4.1.3 Enclave Memory Paging. The TEE runtime and the enclave
memory need different address spaces. The runtime needs to take
charge of all available memory, so we firstly apply a simple map-
ping rule for the whole enclave memory by adding an offset to each
physical address. Then, we perform an extra mapping on memory
regions used by the enclave application. Besides, since the map-
ping rule for the enclave application is unordered, we record each

mapping to the inverse map. Therefore, the update of page tables
during migration can be either located by the offset or the inverse
map. Details of memory migration and inverse map are explained
in Section 4.2.

4.1.4 Dynamic Memory Allocation. To support dynamic memory
allocation, we maintain a memory pool inside the runtime for each
enclave upon creation, which holds page information of unused
memory in the allocated partition(s). When an enclave application
requests memory, the runtime first checks whether the application
memory pool can provide sufficient pages. If the pool runs out of
memory, the SM allocates a new partition following the procedure
described in Section 3.3 and informs the runtime of the correspond-
ing information. The runtime then sets up the page table and refills
the application memory pool for enclave applications.

4.2 Memory Migration

4.2.1 Migration Overview. The memory migration mechanism is
the core part of our solution to enclave memory fragmentation.
The migration process consists of building up the new partition
and tearing down the old one. The SM first assigns the destination
partition to the enclave, then copies the entire content over. Finally,
the source partition will be zeroed and freed.

4.2.2 Updating Page Table. Enclave applications consistently ac-
cess memory via virtual addresses. During the migration process,
the physical address of the content has been changed, so we need
to update the memory mapping for the migrated part to make sure
that virtual addresses are correctly mapped to the new physical
addresses.

As introduced above, we have two memory mappings inside
one enclave for the runtime and enclave application. For runtime
pages, the SM only needs to update the address offset because
of the simple mapping strategy. As for enclave application pages,
one intuitive approach is to traverse all page table entries and
update the migrated physical address. This approach brings great
overhead when the enclave is large, so we introduce the inverse
map mechanism below to increase updating efficiency.

4.2.3 Inverse Map. By observations of our allocation algorithm, it
can be implied that migrations usually take place in the smallest
partition of an enclave. Thus, we can obtain the virtual address
corresponding to physical memory in the migrated fragment so
that the necessary page tables are updated.

We achieve this goal by introducing an inverse map to hold the
physical-to-virtual correspondence. Before an enclave application
starts, the runtime creates an inverse map with initial information
and informs the SM. When the enclave is running, the inverse
map will be updated along with the page table. If a partition needs
migration, the SM looks up the inverse map for virtual addresses
for page table updates so that the overhead is a constant.

Moreover, we reduce the size of the inverse map. In our design,
the inverse map contains triples of the form (pa, va, n), where pa,
va represent physical and virtual address and n marks the number
of adjacent pages beginning with pa. The usage of n significantly
reduces the size of the inverse map while ensuring the efficiency of
indexing. Typically, for an enclave with 256MB memory, around 20
entries are sufficient in the inverse map.

Table 1: LoCs of Components in ASHMAN

Components Lines of Code
Memory Pool Operations 40
Memory Allocation 178
Memory Migration 164
Memory Compaction 29
Total 411

5 EVALUATION

In this section, we first describe our experiment setup and then
evaluate our design following three research questions:

e RQ1: Does AsHMAN significantly increase the Trusted
Computing Base (TCB)?

e RQ2: How many of the concurrent enclave applica-
tions can ASHMAN support?

¢ RQ3: Can AsHMAN make use of available memory as
much as possible?

¢ RQ4: What efficiency can ASHMAN gain when perform-
ing memory migration and crunching?

5.1 Experiment Setup

We prototype AsaMAN on Allwinner’s D1 Nezha board (T-HEAD
C906 single core, 2GB RAM), and QEMU (single-core, 4GB RAM)
based on TEE architecture Coffer [7]. For D1 Nezha, the host OS is
based on Linux 5.4; for QEMU, the host OS is based on Linux 5.13.
Both require a lightweight modification (< 30 LoC) on Linux’s Out
Of Memory (OOM) handler.

We first evaluate the LoC of each component of ASsHMAN to
answer RQ1. Then we utilize QEMU of large memory size to study
RQ2 and RQ3, which are hardware independent. Last, we measure
the performance overhead on the D1 Nezha board to answer RQ4.

5.2 TCB

Table 1 shows the lines of codes (LoCs) for each component of
AsHMAN. Compared to the firmware ASHMAN based on, which con-
sists of 16,605 LoCs, the added TCB of AsHMAN is small. Therefore,
we answer the RQ1 and ASHMAN is not supposed to increase the
TCB of TEE desgin significantly.

5.3 Maximal Enclave Concurrency

In our prototype with QEMU, AsHMAN enables Coffer to success-
fully support up to 128 concurrent enclaves under a memory pool
of 1GB. The upper limit of 128 here is because the Coffer imple-
mentation requires each enclave application to consume at least
8MB. Therefore, the maximal number of enclaves can be high on
a device where the memory pool is large. Theoretically, given a
device with enough memory, there is no limit on the number of
concurrent enclave applications in ASHMAN.

Table 2 shows a comparison of different TEE architectures on the
RISC-V platform. For other existing TEE platforms, there is either
an upper limit of concurrent enclave number, or the architecture
requires additional hardware other than standard PMP. ASsHMAN

Table 2: Comparison of the Number of Concurrent Enclaves in
Different TEEs on RISC-V

Name # of Concurrent Enclaves No Hardware Modification
Keystone [22] # of PMPs v
CURE [13] 13 X
Sanctum [15] # of DRAM regions X
TIMBER-V [24] Not limited X
Penglai [16] Not limited X
Coffer with AsumMAN Not limited v

supports a scalable number of enclaves without any hardware mod-
ification. Therefore, RQ2 is answered.

5.4 Memory Utilization

Memory utilization characterizes how physical memory is actually
used by enclave applications. The memory utilization rate is cal-
culated as My, seq/Mpoor, Where Myeq is the memory used by an
enclave and M,y is the size of the memory pool. It should be noted
that inner fragments are not taken into account in M,s.4. Inner
fragments appear when an enclave allocates a memory partition
but does not use it up.

To precisely evaluate memory utilization in ASHMAN, we design
an experiment with concurrent enclaves keeping allocating memory
from the pool. The concurrent enclaves are designed to have similar
behaviors to real-world applications. They allocate memory of
random sizes in turn. The size for each allocation ranges from
1MB to 128MB. We perform the experiment on Coffer with/without
memory migration. Without memory migration, the allocating
procedure has to stop when one of the enclaves fails to allocate
memory from the pool. We calculated the memory utilization at
this moment. With memory migration, the procedure carries on
until all memory partitions are allocated by the enclave. The pool
size in the experiment is chosen to be 256 MB, 512MB, 768MB, and
1GB and the number of concurrent enclaves ranges from 16 to 128.

The experiment results are shown in Figure 7. The figure shows
memory utilization rate improvement for different numbers of con-
current enclaves and different sizes of the memory pool. The dashed
lines represent the memory utilization rate without ASHMAN, rang-
ing from 14%t043%. The solid lines represent the memory utiliza-
tion rate with AsHMAN, which ranges from 39% to 89%. Among
different cases, ASHMAN improves the memory utilization rate by
149% ~ 516%. Note that ASHMAN does not provide 100% memory uti-
lization due to the minimum management unit of memory (memory
partition). As the number of enclave applications increases, more
memory regions are allocated to enclave applications while not
used. When the number reaches 128, they consume 1GB of memory
for creation. Subsequently, memory requests from either enclave
application fail, but still much memory without in-use.

The experiment shows that ASHMAN significantly improves mem-
ory utilization. Therefore, we have answered RQ3 that AsHMAN
enables Coffer to make full use of physical resources.

5.5 Performance Overhead

To evaluate the performance overhead brought by our proposed
enclave memory management, we focus on two aspects: (1) the

Utilization Rate

e L e ~@- 512MB with Ashman
~@- 768MB with Ashman
~@- 1024MB with Ashman
80% -~ -~ Ogr------m=m=mmmmmmemmmmememe e eeeed s @ 512MB without Ashman
768MB without Ashman
- @- 1024MB without Ashman
F R N e
L i
5Q% mrrmermrmmrmmemm eSS e
°
D
30% 1
20% 1~
e
10% T T T T T T T T
16 32 48 64 80 96 112 128
Number of Enclaves
Figure 7: Memory Utilization Rate
Cycles

—@— Ashman (accumulated)
—@— Linux (accumulated)
108 + —@— Ashman (one-time)
—8— Linux (one-time)

107

10°

10°

328 512B 8KB 128KB 2MB 32MB
Memory Size

Figure 8: Memory Allocation Cycles

efficiency of memory allocation and (2) the overhead of memory
migration.

5.5.1 Memory Allocation Efficiency. We evaluate the efficiency
by measuring: (a) the time consumption of an enclave allocating
different sizes of memory, and (b) the memory allocation time as a
percentage of total execution time for enclaves. The experiments
are performed on a D1 Nezha development board.

For (a), we design two memory allocation tasks to run both in
the enclave and the host OS and compare the time consumption
measured in cycles. The first task is to simply allocate a given size
of memory all at once, whereas the second is to allocate differ-
ent sizes of memory randomly until the total amount reaches a
given value. The experimental results are shown in Figure 8. The
green/blue line stands for one-time/random-accumulated allocation
in ASHMAN, respectively, and the orange/red line corresponds to
one-time/random-accumulated allocation in host OS, respectively.

Figure 8 shows two turning points of time consumption in
AsHMAN. The turning points are at 4KB and 8MB, corresponding to
page size and memory partition size, respectively. They appear due

Table 3: Memory Allocation Time in RV8 Benchmarks

Name qsort aes miniz norx primes

Size 193MB 98MB 27MB 98MB 6MB
Cycles 5.02x 108 252x10% 6.42x107 252x10% 1.39x 10°
Percentage 3.49% 1.61% 0.15% 1.56% 0.01%

Cycles
4x10°4

3x10° 1

2 x10° 1

2 x10° 1

2 x10° 1

1x10° A

5x 108 4

24 8 16 32 64
Number of Partitions

Figure 9: Time Consumption of Memory Migration

to the following reasons. When the requested memory size is below
4KB, the system call brk is not necessarily invoked. Otherwise, the
enclave runtime handles brk, resulting in context switch overhead
between U-mode and S-mode. When the requested size is larger
than 8MB, the enclave runtime further requests the SM for one
more memory partition, which additionally brings overhead caused
by S- to M-mode context switches.

The allocation efficiency in the enclave is lower than that in the
host OS for two main reasons. First, for a memory region larger than
8MB, a switch into M-mode is necessary for ASHMAN. Second, the
enclave runtime utilizes a simpler memory management algorithm
than the host OS to reduce the TCB.

As for (b), we measure the memory allocation time in RV8 bench-
marks [5]. The experiment results are listed in Table 3. During the
entire run, the memory allocation only takes 0.01% ~ 3.49% of
the total execution time. Therefore, AsHMAN does not add much
performance overhead to the enclave.

5.5.2 Memory Migration Overhead. In the following, we evaluate
the overhead caused by migrations. In ASHMAN, each enclave con-
tains a primary partition that holds runtime settings such as page
tables and extended partitions allocated for the enclave applica-
tion. Intuitively, migrating a primary partition involves additional
modification in runtime and thus takes a longer time.

We measure the time consumed to migrate both types of memory
partitions by creating an enclave of different sizes and migrate the
enclave entirely. The overheads, presented in cycles, are plotted in
Figure 9, where the x-axis indicates the number of partitions to mi-
grate. The difference between the primary partition and extended
partitions slightly bends the slope down when there is more than
one partition. On average, it takes around 5.7 x 107 cycles (~0.057s)

to migrate a primary partition and 5.2 x 107 cycles (~0.052s) to mi-
grate an extended partition. Thus, we can infer that the overhead is
negligible compared to the whole execution time (RV8 benchmarks
generally take 14s ~ 28s to finish).

Therefore, we have answered RQ4 that both memory allocation
and memory migration are efficient in ASHMAN, bringing a small
performance overhead to the tested TEE.

In summary, ASHMAN enables the support for executing a large
number of enclaves simultaneously and a high physical resource
utilization rate with a small performance overhead.

6 DISCUSSION AND FUTURE WORK

Shared Memory. Shared memory is a universal technique for na-
tive applications to communicate to others. Host OS provides some
easy-to-use interfaces to map the same physical address to the vir-
tual address of multiple processes [19]. So far, ASHMAN does not
support shared memory due to memory isolation. Similar to Key-
stone, a designated "untrusted" area is pre-defined as a buffer for
approximation of shared memory. We can achieve so by enforcing
this area not migratable in the enclave memory pool.

Parallelism. AsHMAN can support parallelism by design, and we
are on the way to implement it to a multi-core environment. The
challenge raised by parallelism is that multiple enclave applications
may require memory migrations simultaneously. Using locks with
inter-core communication may solve this challenge.

Page Table. In our current prototype, we pre-allocate IMB of mem-
ory for each enclave to store the page table (131,072 entries). This
approach intends to simplify the process of mitigating memory
that contains the page table. Therefore for each enclave application,
the available memory region is actually limited by the size of the
page table. In our current implementation, an enclave application
can use 512MB (131,072 X 4KB) of memory at most. Leveraging
RISC-V’s megapage mechanism [3] can overcome the limitation
and support up to 256GB of memory.

Memory Compaction. Currently, memory compaction simply
migrates all memory partitions to one side. This way, it does not
mitigate the fragmentation of enclaves. Therefore, if the memory
is under high pressure, there may be only enough for new requests
but not for the migration of existing fragments. There are many
ways to alleviate this problem; for example, the entire memory
pool can be extended. In addition, we can also introduce memory
swapping during compaction to eliminate enclave fragmentation.

7 CONCLUSION

We propose a generic extension to the memory management of
existing TEEs. Along with the careful design, we demonstrate the
usability of our solution in high-workload scenarios. On top of
our migration and compaction algorithms, TEEs provide a close-to-
native memory management mechanism for enclave applications.
With our algorithm, we hope it can be integrated into future TEE
designs.

8 ACKNOWLEDGMENTS

We sincerely thank our anonymous reviewers for their insightful
suggestions. Special thanks to Tai Yue for his kindly review and

helpful suggestions. We also appreciate Lei Zhou, Jinting Wu, and
Jingquan Ge, who offer early discussion about the project. This
work was supported by the National Natural Science Foundation of
China under Grant 62102175 and 62002151, and Science, Technology
and Innovation Commission of Shenzhen Municipality under Grant
SGDX20201103095408029.

REFERENCES

(1]

[12

[13]

[14

(15

[16

[17

(18]

[24]

[25]

2008. Arm TrustZone Technology.
security-ip/trustzone.

2015. The Intel Software Guard Extensions. https://software.intel.com/content/
www/us/en/develop/topics/software-guard- extensions.html.

2019. The RISC-V Instruction Set Architecture (ISA) and Related Specifications.
https://riscv.org/technical/specifications/

2019. RISC-V Open Source Supervisor Binary Interface.
riscv/opensbi

2019. RV-8 Bench. https://github.com/rv8-io/rv8-bench
2021. AMD Secure Encrypted Virtualization (SEV). https://developer.amd.com/sev/
2021. Coffer: A software-based TEE architecture on RISC-V. https://anonymous.
4open.science/r/coffer/ README.md

2021. Penglai Enclave: Verifiable and Scalable RISC-V TEE System. https://fosdem.
org/2021/schedule/event/tee_penglai/

2021. QEMU. https://github.com/qemu/qemu

Allwinner Technology. 2021. D1 Development board — Nezha. https://d1.docs.
aw-ol.com/en/d1_dev/

Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. 2013. Inno-
vative Technology for CPU Based Attestation and Sealing. In Proceedings of the
2nd Workshop on Hardware and Architectural Support for Security and Privacy
(HASP’13).

ARM Ltd. 2009. ARM Security Technology - Building a Secure System using
TrustZone Technology. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492¢/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.
Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2021. CURE: A Security
Architecture with CUstomizable and Resilient Enclaves.

Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. 2019. SANCTUARY: ARMing TrustZone with User-space
Enclaves. In Proceedings 2019 Network and Distributed System Security Symposium.
San Diego, CA.

Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In 25th USENIX Security
Symposium (USENIX Security 16). USENIX Association.

Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. 2021. Scalable Memory Protection in the PENGLAI
Enclave. In 15th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 21).

Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Carlos Rozas, Vinay Phe-
gade, and Juan del Cuvillo. 2013. Using Innovative Instructions to Create Trust-
worthy Software Solutions. In Proceedings of the 2nd Workshop on Hardware and
Architectural Support for Security and Privacy (HASP’13).

Zhichao Hua, Jinyu Gu, Yubin Xia, Haibing Guan, Haibo Chen, and Binyu Zang,.
2017. vTZ: Virtualizing ARM TrustZone. In 26th USENIX Security Symposium
(USENIX Security 17).

Marty Kalin. 2019. Inter-process communication in Linux: Shared storage. https:
//opensource.com/article/19/4/interprocess- communication-linux-storage
Keystone Enclave. 2020. seL4 in Keystone. https://github.com/keystone-enclave/
keystone-seL4

Lars Lithr. 2021. SGX-hardware list. https://github.com/ayeks/SGX-hardware
Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn Song, and Krste Asanovic.
2019. Keystone: A Framework for Architecting TEEs. CoRR abs/1907.10119 (2019).
arXiv:1907.10119 http://arxiv.org/abs/1907.10119

Arm Limited. 2010. CoreLink TrustZone Address Space Controller TZC-380
Technical Reference Manual. https://developer.arm.com/documentation/ddi0431/
c/introduction/about-the-tzasc

A. Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison Pearce, Peter G.
Neumann, Simon W. Moore, and Robert N. M. Watson. 2019. Thunderclap:
Exploring Vulnerabilities in Operating System IOMMU Protection via DMA from
Untrustworthy Peripherals. In Proceedings 2019 Network and Distributed System
Security Symposium.

Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson,
Rebekah Leslie-Hurd, and Carlos Rozas. 2016. Intel Software Guard Extensions
(Intel SGX) Support for Dynamic Memory Management Inside an Enclave. In
Proceedings of 2016 Hardware and Architectural Support for Security and Privacy
(HASP’16). ACM Press.

https://developer.arm.com/ip-products/

https://github.com/

[26] Frank Mckeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi,

[27

[28

[29

[31

(32]

A

Vedvyas Shanbhogue, and Uday Savagaonkar. 2013. Innovative Instructions and
Software Model for Isolated Execution. In Proceedings of the 2nd Workshop on
Hardware and Architectural Support for Security and Privacy (HASP’13).
Nazarewicz Michal. 2012. A deep dive into CMA [LWN.net]. https://lwn.net/
Articles/486301/

Saeid Mofrad, Fengwei Zhang, Shiyong Lu, and Larry Shi. 2018. A Comparison
Study of Intel SGX and AMD Memory Encryption Technology. In Proceedings of
2018 Hardware and Architectural Support for Security and Privacy (HASP’18).
Pascal Nasahl, Robert Schilling, Mario Werner, and Stefan Mangard. 2020.
HECTOR-V: A Heterogeneous CPU Architecture for a Secure RISC-V Execution
Environment.

Zhenyu Ning, Fengwei Zhang, Weisong Shi, and Larry Shi. 2017. Position Paper:
Challenges Towards Securing Hardware-assisted Execution Environments. In
Proceedings of 2017 Hardware and Architectural Support for Security and Privacy
(HASP’17).

SiFive, Inc. 2021. SiFive U74-MC Core Complex Manual. https://starfivetech.com/
uploads/u74mc_core_complex_manual 21G1.pdf

Fengwei Zhang and Hongwei Zhang. 2016. SoK: A study of using hardware-
assisted isolated execution environments for security. In Proceedings of Hardware
and Architectural Support for Security and Privacy (HASP’16).

MEMORY ALLOCATION ALGORITHM

Algorithm 1: Memory Allocation Algorithm

1

10

11

12

13

14

15

16

17

18
19
20
21

22

Input :n: Number of requestsed partitions
R: Set of adjacent regions owned by the enclave
N: Maximum number of allowed PMP regions
Output:s: The first partition of requested memory
Function malloc(n)
// 1. Expand region if possible
foreach r € R do
s’ « find_largest_contiguous_nearby(r);
if sizeof(s’) > n then
s « expand_region(r, s);
L return s;

// 2. Allocate new region if PMP sufficient
if |[R| < N then

s « find_contiguous_free(n);

if s # NULL then

L R < RU{s}h

return s;

o

// 3. Find a smallest region for migration
r’ « argmin,cg sizeof (r);
s « find_contiguous_free(n + sizeof (r));
if s # NULL then
migrate(s,r’);
R—R\{r'}u{sh
return s;
// 4. Try performing compaction
if is_compacted() then
‘ return out_of_memory();
else
memory_compaction();
L return malloc(n);

https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://riscv.org/technical/specifications/
https://github.com/riscv/opensbi
https://github.com/riscv/opensbi
https://github.com/rv8-io/rv8-bench
https://developer.amd.com/sev/
https://anonymous.4open.science/r/coffer/README.md
https://anonymous.4open.science/r/coffer/README.md
https://fosdem.org/2021/schedule/event/tee_penglai/
https://fosdem.org/2021/schedule/event/tee_penglai/
https://github.com/qemu/qemu
https://d1.docs.aw-ol.com/en/d1_dev/
https://d1.docs.aw-ol.com/en/d1_dev/
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://opensource.com/article/19/4/interprocess-communication-linux-storage
https://opensource.com/article/19/4/interprocess-communication-linux-storage
https://github.com/keystone-enclave/keystone-seL4
https://github.com/keystone-enclave/keystone-seL4
https://github.com/ayeks/SGX-hardware
https://arxiv.org/abs/1907.10119
http://arxiv.org/abs/1907.10119
https://developer.arm.com/documentation/ddi0431/c/introduction/about-the-tzasc
https://developer.arm.com/documentation/ddi0431/c/introduction/about-the-tzasc
https://lwn.net/Articles/486301/
https://lwn.net/Articles/486301/
https://starfivetech.com/uploads/u74mc_core_complex_manual_21G1.pdf
https://starfivetech.com/uploads/u74mc_core_complex_manual_21G1.pdf

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 RISC-V Security Mechanisms
	2.2 Memory Management in Existing TEEs

	3 Design
	3.1 Overview
	3.2 Memory Access Control
	3.3 Dynamic Memory Allocation

	4 Implementation
	4.1 Memory Allocation
	4.2 Memory Migration

	5 Evaluation
	5.1 Experiment Setup
	5.2 TCB
	5.3 Maximal Enclave Concurrency
	5.4 Memory Utilization
	5.5 Performance Overhead

	6 Discussion and Future Work
	7 Conclusion
	8 Acknowledgments
	References
	A memory allocation algorithm

