

(C) 2010 Pearson Education, Inc. All rights reserved.

Notes on Set and Get Methods
} The set and get methods are used in many other methods even when these

methods can directly access the class’s private data

34

public class Time2 {
private int hour;
private int minute;
private int second;
public String toUniversalString() {

return String.format("%02d:%02d:%02d",
getHour(), getMinute(), getSecond());

}

public String toString() {
return String.format("%d:%02d:%02d %s",

((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12),
getMinute(), getSecond(), (getHour() < 12 ? "AM" : "PM"));

}
}

Why not directly accessing
the fields?

(C) 2010 Pearson Education, Inc. All rights reserved.

Suppose we directly access fields…
} Someday, if we want to optimize the program by using only one int

variable (4 bytes of memory) to store the number of seconds elapsed since
midnight rather than three int variables (12 bytes of memory)

35

public class Time2 {
private int hour;
private int minute;
private int second;
public String toUniversalString() {

return String.format("%02d:%02d:%02d", hour, minute, second);
}

public String toString() {
return String.format("%d:%02d:%02d %s",

((hour == 0 || hour == 12) ? 12 : hour % 12),
second, second, (hour < 12 ? "AM" : "PM"));

}
}

private int totalElapsedSeconds;

We need to modify all methods: getHour, getMinute, getSecond,
setHour, setMinute, setSecond, toUniversalString, toString...

(C) 2010 Pearson Education, Inc. All rights reserved.

If We Use Set and Get Methods
} We only need to modify: getHour, getMinute, getSecond, setHour,

setMinute, setSecond

} No need to modify toUniversalString, toString etc. because they do
not access the private data directly.

36

public class Time2 {
public String toUniversalString() {

return String.format("%02d:%02d:%02d",
getHour(), getMinute(), getSecond());

}

public String toString() {
return String.format("%d:%02d:%02d %s",

((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12),
getMinute(), getSecond(), (getHour() < 12 ? "AM" : "PM"));

}
}

Designing the class this way reduces the

likelihood of programming errors when

altering the class’s implementation

(C) 2010 Pearson Education, Inc. All rights reserved.

Code Reuse (Avoid Duplications)
} Similarly, each Time2 constructor could be

written to include a copy of the statements
from methods setHour, setMinute and
setSecond.

§ Doing so may be slightly more efficient, because
the extra constructor call and call to setTime
are eliminated.

§ However, duplicating statements in multiple
methods or constructors makes changing the
class’s internal data representation more difficult.

§ Having the Time2 constructors call the three-
argument constructor requires any changes to
the implementation of time setting to be made
only once (by changing setTime).

37

public class Time2 {
public Time2(int h, int m, int s) {

setTime(h, m, s);
}

public Time2(int h, int m) {
this(h, m, 0);

}

public Time2(int h) {
this(h, 0, 0);

}

public Time2() {
this(0, 0, 0);

}

public Time2(Time2 time) {
this(time.getHour(), time.getMinute(),

time.getSecond());
}

}

(C) 2010 Pearson Education, Inc. All rights reserved.

More on Data Hiding and Integrity
} It seems that providing set and get capabilities is essentially the

same as making the instance variables public.
§ A public instance variable can be read or written by any method that has a

reference to an object that contains that variable.

§ If an instance variable is declared private, a public get method certainly
allows other methods to access it, but the get method can control how the client
can access it.

§ A public set method can—and should—carefully scrutinize attempts to modify
the variable’s value to ensure that the new value is consistent for that data item.

38

public int hour; // this makes coding easier, but...
public int minute;
public int second;

(C) 2010 Pearson Education, Inc. All rights reserved.

Composition
} A class can have references to objects of other classes as

members.

} This is called composition and is sometimes referred to as a
has-a relationship.

39

House

Bedroom

Kitchen

Bathroom

HAS-A

HAS-A

HAS-A

...

} Suppose we are designing an Employee Management System,

what information should be included in the Employee class?

Designing an Employee Class

(C) 2010 Pearson Education, Inc. All rights reserved. 40

First name (String type)

Last name (String type)

Date of birth (? type)

Date of hiring (? type)

… potentially lots of other information

} What kind of information (stored in

instance variables) should be

included?

} What kind of operations (methods)

should be included?

Let’s Define a Date Class

(C) 2010 Pearson Education, Inc. All rights reserved. 41

This UML class diagram is automatically generated
by Eclipse with a plugin named ObjectAid

Define the Employee class

(C) 2010 Pearson Education, Inc. All rights reserved. 42

References to objects of String and Date
classes as members (composition)

Let’s Look at the Real Code

(C) 2010 Pearson Education, Inc. All rights reserved. 43

public class Date {

private int month;

private int day;

private int year;

}

We make the instance variables private for data hiding.

Let’s Look at the Real Code

(C) 2010 Pearson Education, Inc. All rights reserved. 44

public Date(int theMonth, int theDay, int theYear) {
month = checkMonth(theMonth);
year = theYear;
day = checkDay(theDay);
System.out.printf("Date object constructor for date %s\n", this);

}

private int checkMonth(int testMonth) {
if(testMonth > 0 && testMonth <=12) return testMonth;
else {

System.out.printf("Invalid month (%d), set to 1", testMonth);
return 1;

}
}

Constructor performs data validation

Data validation

Let’s Look at the Real Code

(C) 2010 Pearson Education, Inc. All rights reserved. 45

private int checkDay(int testDay) { // data validation
int[] daysPerMonth =

{ 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
if(testDay > 0 && testDay <= daysPerMonth[month]) return testDay;
if(month == 2 && testDay == 29 && (year % 400 == 0 ||
(year % 4 == 0 && year % 100 != 0)))
return testDay;

System.out.printf("Invalid day (%d), set to 1", testDay);
return 1;

}

public String toString() { // transform object to String representation
return String.format("%d/%d/%d", month, day, year);

}

Let’s Look at the Real Code

(C) 2010 Pearson Education, Inc. All rights reserved. 46

public class Employee {

private String firstName;

private String lastName;

private Date birthDate;

private Date hireDate;

}

Again, we make the instance variables private for data hiding.

Let’s Look at the Real Code

(C) 2010 Pearson Education, Inc. All rights reserved. 47

public Employee(String first, String last, Date dateOfBirth,
Date dateOfHire) { // constructor

firstName = first;
lastName = last;
birthDate = dateOfBirth;
hireDate = dateOfHire;

}

public String toString() { // to String representation
return String.format("%s, %s Hired: %s Birthday: %s",

lastName, firstName, hireDate, birthDate);
}

Let’s Run the Code

(C) 2010 Pearson Education, Inc. All rights reserved. 48

public class EmployeeTest {

public static void main(String[] args) {

Date birth = new Date(7, 24, 1949);

Date hire = new Date(3, 12, 1988);

Employee employee = new Employee("Bob", "Blue", birth, hire);

System.out.println(employee);

}

}
Date object constructor for date 7/24/1949

Date object constructor for date 3/12/1988

Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949

