
Introduction to Computer Programming (Java A) 
Lab 13 

 
 

!"#$%&'()%*+

l !"#$%&&"'(")*+,%&-#%./+%01&
!,-%.&(/%/*!

Suppose that you want to use a java.io.BufferedReader to read the text 
from a disk file. The program did not handle the exception declared, 
which resulted in compilation error. 

!
!

Run result: 
 

Why? 

Because the FileReader's constructor, the readLine() , and the close () 
declare exceptions. 
If a method declares an exception in its signature, you cannot use this 
method without handling the exception - you can't compile the 
program. 

 

!
 

 

 

 

 

!
 

 

!
 

 

!

 

 

 



!

 

 

!
 

 

 

 

 

 

 

 

 

!
 

 

!
 

 

 

 

 

 

 

 

 

 

 

 

 

Fortunately, there are two ways to solve this problem. 
 
Method 1 

Catch the exception via a "try-catch" (or "try-catch-finally") construct. 

!

Rewrite the previous code according to this structure to add exception 
handling. 

!



 

!
 

 

 

 

 

 

 

 

 

 

 

!
 

 

!

 

 

 

!

 

!
!

Take note that the main logic in the try-block is separated from the 
error handling codes in the catch-block. 

Method2 
You decided not to handle the exception in the current method, but 
throw the exception up the call stack for the next higher-level method 
to handle. 

!

!

In this case, the next higher-level method of main() is the JVM . 

Call Stack for exception 
Run the following code to see call stack of the exception. 

!

 

 

 

 

 

 

 



!
!

Run result: 
 

The following picture is a good explanation of the procedure for 
calling the stack of exceptions. 

 

System.out.println(ex.toString()); 

 

!
 

 

 

 

 

 

 

 

 

 

!

 

 

 

 



!
!

Exception Classes - Throwable, Error, Exception & 
RuntimeException 
The figure below shows the hierarchy of the Exception classes. The base 
class for all Exception objects is java.lang.Throwable , together with its 
two subclasses java.lang.Exception and java.lang.Error . 

!

The Error class describes internal system errors. 
The Exception class describes the error caused by your program. 
RuntimeException , Error , and their subclasses are known as 
unchecked exceptions. All other exceptions are known as 
checked exceptions, meaning the compiler forces the programmer 
to check and deal with them in a try-catch block or declare it in 
the method header 

Five keywords are used in exception handling: try, catch, finally, 
throws and throw (take note that there is a difference between throw 
and throws ). 
Java's exception handling consists of three operations: 

!" Declaring exceptions; 
#" Throwing an exception; and 
$" Catching an exception. 

The exception info is helpful to debug, it tells: 

01+,-&%2'(34+'52%+

ü 6.('78%'(&+

ü 6..95:4;%-"<'"=>3<4;+

ü ?%@9'()%6..95A(B%,-&%2'(34+

ü ?<CCD3(4'%.,-&%2'(34+

ü ?<8#%.E3.89',-&%2'(34+

F1+,-&%2'(34+.%9/34+

ü G()%;+#5+B%.3+



!

 

!
 

!

 

 

 

 

 

 

 

!
 

 

System.out.println(anArray[3]); 

 

!
 

 

 

 

 

 

 

 

System.out.println(strs[0].length()); 

 

!
 

ü H+(/+3<'+3=+9..95+:4;%-+#3<4;/+

ü I+

H1 ,-&%2'(34+2C9&%+

+

To further familiarize you with common exceptions, we define 
common exceptions as enumerations and write a program that 
selectively trigger exception. 

!



!
!
!
!

You can change the value of exceptionIndex to learn about the various common 
exceptions. 

Lab exercise 
Modify the program CommonExceptionDemo.java to accomplish the 
following tasks: 
1. Display the info(name and ordinal value) of every element in a enum 
“ExceptionEnum”. 
2. Ask user to input a integer. 
3. According to the value of user’s input, trigger the Exception and show its 
information. 
4. While get the input value use `try` and `catch` to check: 

1) If the input is not a number trigger `InputMismatchException`, Catch it 
and print the Exception message. 

2) If the input is in a number but its value is not Between 0 and 5,Throw an 
`IllegalArgumentException `,Catch it and print the exception message. 

 

 

 

 

 

 

 

 

 

!
 

 

!
 

 

!

NEGATIVEARRAYSIZE, 

 

 

 



 
 

The sample inputs and outputs are as follows:



!
!
!

!

!
!


