
Dirty COW Race Condition
Attack

Outline
● Dirty COW vulnerability
● Memory Mapping using mmap()
● Map_shared, Map_Private
● Mapping Read-Only Files
● How to exploit?

Dirty COW vulnerability
● Interesting case of the race condition vulnerability.
● Existed in the Linux Kernel since September 2007 , was discovered and

attacked on October 2016.
● Affects all Linux-based operating system, including Android.

Consequences :

● Modify protected files like /etc/passwd.
● Gain root privileges by exploiting the vulnerability.

Memory Mapping using mmap()
mmap() - system call to map files or devices into memory. Default mapping type is
file-backed mapping, which maps an area of a process’s virtual memory to
files;reading from the mapped area causes the file to be read

Line ① opens a
file in read-write
mode.

Memory Mapping using mmap()

Line ② calls mmap() to create a mapped memory

1st arg: Starting address for the mapped memory
2nd arg: Size of the mapped memory
3rd arg: If the memory is readable or writable. Should match the access type
from Line ①
4th arg: If an update to the mapping is visible to other processes mapping the
same region and if the update is carried through to the underlying file
5th arg: File that needs to be mapped
6th arg: Offset indicating from where inside the file the mapping should start.

Memory Mapping using mmap()

Access the file for simple
reading and writing using
memcpy().

MAP_SHARED and MAP_PRIVATE
MAP_SHARED: The mapped
memory behaves like a
shared memory between the
two processes.

When multiple processes
map the same file to
memory, they can map the
file to different virtual
memory addresses, but the
physical address where the
file content is held is same.

MAP_SHARED and MAP_PRIVATE
MAP_PRIVATE: The file is
mapped to the memory private
to the calling process.

● Changes made to
memory will not be visible
to other processes

● The contents in the original memory need to be copied to the private memory.
● If the process tries to write to the memory, OS allocates a new block of

physical memory and copy the contents from the master copy to the new
memory.

● Mapped virtual memory will now point to the new physical memory.

Copy On Write
Technique that allows virtual memory in different processes to map to the same
physical memory pages, if they have identical contents.

When a child process is created using fork() system call :

● OS lets the child process share the parent process’s memory by making page
entries point to the same physical memory.

● If the memory is only read, memory copy is not required.
● If any one tries to write to the memory, an exception will be raised and OS will

allocate new physical memory for the child process (dirty page), copy
contents from the parent process, change each process’s (parent and child)
page table so that it points to it’s own private copy.

Discard Copied Memory

madvise(): Give advices or directions to the kernel about the memory from
addr to addr + length

advice (3rd argument): MADV_DONOTNEED

● We tell the kernel that we do not need the claimed part of the address any
more. The kernel will free the resource of the claimed address and the
process’s page table will point back to the original physical memory.

Mapping Read-Only Files: Create a File First
Experiment :

Create a file zzz in the root directory. Set owner/group to root and make it
readable to other users.

If we have a seed account :
● We can only open this file using read_only flag (O_RDONLY).
● If we map this file to the memory, we need to use PROT_READ option, so

the memory is read-only.

Mapping Read-Only Files
● Normally, we cannot write to the read-only memory.

● However, if the file is mapped using MAP_PRIVATE, OS makes an exception
and allow us write to the mapped memory, but we have to use a different
route, instead of directly using memory operations, such as memcpy().

● The write() system call is such a route.

Mapping Read-Only Files: the Code
Line ①: Map /zzz into read-only
memory. We cannot directly write
this to memory, but it can be done
using the /proc file system.

Line ②: Using the /proc file
system, a process can use
read(),write() and lseek() to access
data from its memory.

Line ③: The lseek() system call moves the file pointer to the 5th byte from the
beginning of the mapped memory.

Mapping Read-Only Files: the Code

Line ④: The write() system call writes a string to the memory. It triggers copy on
write (MAP_PRIVATE), i.e., writing is only possible on a private copy of the
mapped memory.

Line ⑤: Tell the kernel that private copy is no longer needed. The kernel will point
our page table back to the original mapped memory. Hence, the changes made to
the private file is discarded.

Mapping Read-Only Files: The Result

Memory is modified as we can see the changed content. But the change is only
in the copy of the mapped memory; it does not change the underlying file.

The Dirty-COW Vulnerability
For Copy-On-Write, three important steps are performed:

(A) Make a copy of the mapped memory
(B) Update the page table, so the virtual memory points to newly created physical

memory
(C)Write to the memory.

The above steps are not atomic in nature: they can be interrupted by other threads
which creates a potential race condition leading to Dirty Cow vulnerability.

Dirty-COW vulnerability

Dirty-COW vulnerability
If madvise() is executed between Steps B and C :

● Step B makes the virtual memory point to 2.
● madvise() will change it back to 1 (negating Step B)
● Step C will modify the physical memory marked by 1, instead of the private

copy.
● Changes in the memory marked by 1 will be carried through to the underlying

file, causing a read-only file to be modified.

When write() system call starts, it checks for the protection of the mapped
memory. When it sees that is a COW memory, it triggers A,B,C without a double
check.

Exploiting Dirty COW vulnerability
Basic Idea : Need to run two threads

● Thread 1: write to the mapped memory using write()
● Thread 2: discard the private copy of the mapped memory

We need to race these threads against each other so that they can influence the
output.

Exploiting Dirty COW vulnerability
Selecting /etc/passwd as Target File: The file is a read-only file, so non-root
users cannot modify it.

The third field denotes the User-ID of the user (for Root, it is 0). If we can change
the third field of our own record (user testcow) into 0, we can turn ourselves into
root.

Change it to 0000 using the Dirty COW vulnerability

Attack: the Main Thread
Set Up Memory Mapping and
Threads

● Open the /etc/passwd file in
read-only mode

● Map the memory using
MAP_PRIVATE

● Find the position in the
target file.

● Create a thread for
madvise()

● Create a thread for write()

Attack: the Two Threads

The write Thread:
Replaces the string
“testcow:x:1001” in the
memory with
“testcow:x:0000”

The madvise Thread:
Discards the private copy of
the mapped memory so the
page table points back to the
original mapped memory.

Attack result

Summary
● DirtyCOW is a special type of race condition problem

● It is related to memory mapping

● We learned how the vulnerability can be exploited

● The problem has already been fixed in Linux

