Nailgun Defense

Chenxu Wang and Fengwei Zhang

Outline

1. Introduction

2. Background

3. Design and Implementation
4. Possible Q&A

5. Necessary materials

Introduction: Nailgun Attack

An attack to break the privilege isolation via debugging

HOST processor escalates the privilege of TARGET processor by

sending instructions (e.g., dcps3) via memory-mapped debug
registers.

Introduction: Nailgun Attack

A Multi-processor SoC System

High-privilege Resource
(Secure RAM/Register/Peripheral)
Privilege
Escalation
TARGET o Request oo b HOST
(Debug State) E § < ' E E (Normal State)
(Low Privilege) gooog ooooo (Low Privilege)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Source: Nailgun Attack Lecture slides

Introduction: How to defend?

Disabling the debug authentication signals”? Great challenges!

1. Heavily influence most debug tools
2. Management of debug authentication is not publicly available

Introduction: How to defend?

Strict restriction in the inter-processor debugging?
Hardware-based access control to the debug registers?

Manufactures can implement it on the future devices.
But a great callback of current devices is expensive.

How about some software-based access control?

Introduction: Our defense

Implement the defense on higher privilege.
Control the access of the debug registers via memory mapping.

Fortunately, Arm provides Stage-2 translation.
It is controlled by EL2, and restrict the memory access in EL1&0.

Background

Background: Arm Exception Levels

Two worlds, Four ELs with different privileges.
Different CPUs can be in different ELs.

Non-secure Secure
ELO AArch32 AArché4
App App

EL1 AArché4 Kernel

EL2 Hypervisor

AArch32 App Trusted Services

Trusted Partition
Manager”

AArch32 Kernel [l Trusted OS

EL3 Firmware / Secure Monitor

* Secure EL2 from Armv8.4-A

*Source: https://developer.arm.com/documentation/102412/0100/Execution-and-Security-states

Background: Arm Address Translation

Arm introduces three types of address:
Virtual Address (VA)

Intermediate Physical Address (IPA)
Physical Address (PA)

It can be used to isolate the process’ address space, access control, etc.

Background: Arm Address Translation
Arm also defines the address translation regimes.

EL1&0 stage 1

EL1&0, when EL2 is disabled VA » PA

Controlled from EL1"'
_ EL1&0 stage 1 EL1&0 stage 2
VA » |PA » PA
EL1&0, when EL2 is enabled Controlled from EL1' Controlled from EL2'
4

EL2 or EL2&0% VA EL2, or EL2&0", stage 1 > PA
Controlled from EL2'

EL3 VA =g > PA

Controlled from EL3

*Source: D5-2684 (64-bit address translation), also you can see G5-6264 (32-bit address translation)

Background: Arm Address Translation

Stage 1 translation exists in all ELs.
But EL1&0 contains an additional translation: Stage-2 translation.

It is controlled by EL2.

Hypervisor in Arm architecture can use it to handle the memory
management for VMs.

Similarly, we can use it in access control for EL1&0 CPUs.

Background: Stage-2 translation

How to provide the table?

VTTBR register defines the address of the S-2 translation table.
Put the address of translation table into this register.

BADDR, bits [47:1]

Translation table base address, bits[47:x], Bits [x-1:1] are RES0, with the additional requirement that
if bits[x-1:3] are not all zero, this 1s a misaligned translation table base address, with effects that are
CONSTRAINED UNPREDICTABLE, and must be one of the following:

*Source: G8-6942

Background: Stage-2 translation

How to use it?

We (1) Enable the S-2 translation, and (2) Provide the table of S-2
translation, then Memory Management Unit (MMU) will perform the S-2
translation after the S-1 translation.

You may ask these questions:
How to enable it?

How to provide the table?

How to create the table?

Background: Stage-2 translation

How to enable it?
HCR register controls the S-2 translation.

Set the bit[0] of HCR register as 0x1.

VM, bit |0]
Virtualization enable. Enables stage 2 address translation for the Non-secure EL1&0 translation
regime.
0bo Non-secure EL1&0 stage 2 address translation disabled.
0bl Non-secure EL1&0 stage 2 address translation enabled.

*Source: G8-6599

Background: Stage-2 translation

Actually, it does not need the specific table address.

It cuts the offset of the table address, which is provided in VTCR
register.

We will configure this register later.

X 18 determined from the value of VTCR.SLO and VTCR.T0OSZ as follows:

. [f VITCR.SLO 1s 0b00, meaning that lookup starts at level 2, then x 1s 14 - VTCR.TOSZ.
. [f VTCR.SLO 1s 0b01, meaning that lookup starts at level 1, then x 1s 5 - VTCR.TOSZ.
. [f VTCR.SLO 1s either 0b10 or 0b11 then a stage 2 level 1 Translation fault 1s generated.

*Source: G8-6942

Background: Stage-2 translation

How to create the table?

The translation table consists of several levels and page entries (descriptors).
Each descriptor indicates the attributes of a region.

Attributes: Read, Write, Execute, Cacheable...

Region: the size is decided by the level of the descriptor.
Level1: 1GB region
Level2: 2MB region
Level3: 4KB region

Background: Stage-2 translation

It shows the architecture of the translation table, the “Block” “Table” “Page”
are different types of the descriptors.

Level 1 tables

[VTTER] » 1GB

Block memory 5 Level 2 tables
Indexed by region 2MB
IPA[38:30] Table Block > memory _Level 3 table
Indexed by region
IPA[29:21] Table 4KB
Indexed by Page > memory
Block IPA[20:12] page
Table Block
Table
Up to two concatenated

Level 1 tables, so that
IPA[39] indexes the table.

*Source: G5-6289

Background: Stage-2 translation

When we get a descriptor, it looks like this:

(Stage-2 translation uses Long descriptor, be careful when read manual.)

63 - 10

Invalid IGNORED
63 » 52 51 » 40 39 N n n-1 N 1211) . o I
Block | Upper block attributes sBz* Output address[39:n] RESO Lower block attributes| 0 | 1

" " " " "

For the level 1 descriptor, n is 30. For the level 2 descriptor, n is 21.

NSTable
APTable Stage 1 only,
‘ XNTable SBZ at stage 2
— PXNTable
636261605958 5251 . 40 39 . 1211 . 210
Table IGNC‘)):RED SB:Z‘ Next-level table:address[39:12] IGNC}:RED 11

LA " Ll "

*Source: G5-6290

Background: Stage-2 translation

In a descriptor, the last two bits indicate the type of the descriptor.

Block (Level 1,2)/Page (Level 3): translation end, directly get the output

Invalid: translation fault

Table (Level 1,2): translation continue, go to next level.

63 52 51 40 39

L4 it it

n n-1

12 11 i 2

Block | Upper block attributes SBZ* Output address[39:n]

"

RESO

it

L

L " w

For the level 1 descriptor, n is 30. For the level 2 descriptor, n is 21.

*Source: G5-6290

"

”

Lower block attributes| 0 | 1

Background: Stage-2 translation

It contains some attributes (which is not important in this Lab).

It indicates the output address, or the address of the next descriptor.

To get them, add the provided address (e.g., bit[39:12]) and the offset of your input
address (e.g., bit[11:0]).

Table

63 62 61 60 59 58 52 51 40 39 B 12 11 y - |
IGNORED SBZ* Next-level table address[39:12] IGNORED 111

63 & 52 51 40 39 2 n n-1 1211 7 2 190

Block | Upper block attributes sBz* Output address[39:n] RESO Lower block attributes| 0 | 1

"

"

"

For the level 1 descriptor, n is 30. For the level 2 descriptor, n is 21.

"

"

*Source: G5-6290, SBZ=should be zero, means fill 0; RESO: reserved as 0, means fill 0; IGNORED: fill anything

you like

Background: Stage-2 translation

Example:

Your Input address is 0x12345678

Bit[39:12] (Next-level table address) is Oxdeadb

Then next address (Oxdeadb<<12)+0x678=0xdeadb678.

Read it to get the value of the descriptor.

636261605958 = 5251) 40 39 . 12 11 21 6

Table IGNORED SBZ* Next-level table address[39:12] IGNORED 111

"

"

*Source: G5-6290, SBZ=should be zero, means fill 0; RESO: reserved as 0, means fill 0; IGNORED: fill anything
you like

Design

Design

Goals in this Lab:
Enable the Stage-2 translation.

Invalid the mapping of the debug registers.
Invalid the mapping of S-2 translation table.

Design: Enable Stage-2 translation

Modified the device tree files to reserve a memory for the table.

In kernel booting stages, creating the S-2 translation table.
And configure related registers.

Replace the kernel image and compiled device tree files (.dtb) in “/boot”
directory.

Boot your Raspberry Pi.

Design: Invalidate Mapping

The mapped memory of the debug registers is 0x4003 0000 ~
0x4003 OFFF.

It is a 4KB region, you should split your table to 4KB-size granule.

Also, do not forget to invalidate the mapping of your table.
It just affect the EL1 attacker to read it, but not affect the EL2.

Design: Example

Here is one example of the table layout in 0x0 ~ OxFFFF_FFFF (only invalid

dbg)
VTTBR: point to area0

area0:

0x0000 0000 ~ Ox3FFF _FFFF: 1GB block

0x4000 0000 ~ Ox7FFF_FFFF: table, point to areat
0x8000 0000 ~ OxBFFF_FFFF: 1GB block

0xC000 0000 ~ OxFFFF_FFFF: 1GB block

areal:

0x4000 0000 ~ 0x401F_FFFF: table, point to area2
0x4020 0000 ~ 0x403F FFFF: 2MB block

0x4040 0000 ~ Ox405F FFFF: 2MB block

Ox7E0Q0_0000 ~ Ox7FFF_FFFF: 2MB block

areaZz:
0x4000 0000 ~ 0x4000 OFFF: 4KB Page

0x4002_F000 ~ 0x4002 FFFF: 4KB Page
0x4003 0000 ~ 0x4003 OFFF: Invalid (0x0)
0x4003 1000 ~ 0x4003 1FFF: 4KB Page
0x4003_2000 ~ 0x4003 2FFF: 4KB Page

0x401F_0000 ~ 0x401F_FFFF: 4KB Page

Design: Example Translation Table Walk

Here we give an example of a successful address translation.
You can see the whole translation process in K7-8498.

We recommend you configure these bits of VTCR registers

SLO[7:6]: Ox1 (Starting at Level 1)
T0SZ[3:0]: 0x0 (Indicating the PA size is 2*32-1)
SL0, bits [7:6]
Starting level for translation table walks using VT TBR.
0b0o Start at level 2
0bol Start at level |

TOSZ, bits |3:0]
The size offset of the memory region addressed by VITBR. The region size is 2(32-T0SZ) bytes.

This field holds a four-bit signed integer value, meaning it supports values from -8 to 7.

Design: Example Translation Table Walk

When we translate the IPA 0x4003_ 1234, starting at Level 1.
(1) We do Level 0 translation, and VTTBR tells us to go to area 0.
(2) We go to area 0 and get the descriptor of 0x4000 0000 ~ Ox7FFF_FFFF

nis {4’ 5} m27 n+*26
39 | 1] 3020 2120 12)11 0
Input address
A /
63 , 5655 48 47 4039 = An1 0
’ " "
RESO Properties SBZ? Translation table base address[39:n) RESO TTBR
J; \ " / ”
4 n1
39 n|la2 o _
000 Descriptor
address
- J
o=

*Source: K7-8498

Design: Example Translation Table Walk -

When we translate the IPA 0x4003_ 1234, starting at Level 1.

(3) We do Level 1 lookup of the descriptor 0x4000 0000 ~ Ox7FFF_FFFF, it
is a table, and we should go to areaZ2 to find the next descriptor.

(4) We go to area2 and get the descriptor of 0x4000_0000 ~ 0x401F_FFFF

39

n|la2 o
B 000
\ "/ /
Level 1 lookup
'd / 3
63 5958 , 5251 4847 40 39 o 1211 1.8
Properties| IGNORED | RESO SBZ? Level 2 table address[39:12) IGNORED |1 1
" & ") %

" & Y i N
39 " 12[11 32 0
000

*Source: K7-8498

Descriptor
address

Level 1
table descriptor

Descriptor
address

Design: Example Translation Table Walk =&+

When we translate the IPA 0x4003_ 1234, starting at Level 1.
(5) We do Level 2 lookup of the descriptor 0x4000 0000 ~ 0x401F_FFFF, it

is a table, and we should go to aread to find the next descriptor.

(6) We go to area3d and get the descriptor of 0x4003_0000 ~ 0x4003_OFFF

/ Y \
39 12/11 32 0
000
\ / /
Level 2 lookup
' / hY
63 5958 , 5251 4847 4039 " 1211 210
” " Ll
Properties | IGNORED RESO SBZ? Level 3 table address[39:12) IGNORED |1 1
45 - i} - ¥
/ v \
39 $ 12/11 52 -8
; 000

*Source: K7-8498

Descriptor
address

Level 2
table descriptor

Descriptor
address

Design: Example Translation Table Walk =

When we translate the IPA 0x4003_ 1234, starting at Level 1.

(7) We do Level 3 lookup of the descriptor 0x4003 0000 ~ 0x4003 OFFF, it
IS a page.

(8) Our translation result is (OA[39:12]<<12)+0x234

X X
3 Y N
39 1211 - 0 N 5
escniptor
i e address
\ / /
Level 3 lookup
‘< / Y
63 . 5251 4847 4039 » 1211 210 s
) " Yy . I eve
Propgrttes RESO SBZ Output add#ress{39.12] Propgmes 11 page descriptor

*Source: K7-8498

Possible Q&A

Possible Q&A

The system crashes when | load the Nailgun attack, why?

When we access the invalid region, it will trigger a translation
fault.

But we have not designed the corresponding exception handler.

So the system cannot jump to the correct PC to exit the attack.

Possible Q&A

How about the cache and TLB attacks?

Actually, this Lab have not considered these attacks.

You can call them as “side-channel attack”, which is a popular
topic.

We may extend the discussion in the future.

Possible Q&A

How about peripheral attacks?

Attacker can use the peripherals, such as GPU and DMA, to bypass the
MMU (Specifically, the MMU for CPU).

But we can config the MMU for them with S-2 translation, which is called as
SMMU (or IOMMU).

|
| P

*Source: https://developer.arm.com/documentation/ihi0070/latest

Possible Q&A

Do we have technical support?

The biggest support is the reference manual.
Look up it and solve your problem.

Also, you can contact partial designers of this Lab.
12150073@mail.sustech.edu.cn (WANG Chenxu)

mailto:12150073@mail.sustech.edu.cn

Necessary materials

1. Armv8-A Reference Manual

Download: https://developer.arm.com/documentation/ddi0487/latest

A dictionary of Armv8-A architecture.

Important part in this Lab: G5.1-G5.7, K7.2
(They are reference about 32-bit Armv8-A architecture)

https://developer.arm.com/documentation/ddi0487/latest

Necessary materials

2. Linux Kernel Source file

Raspberry Pi provides the source codes for its kernel.

Download: https://github.com/raspberrypi/linux

Here we use the branch rpi-4.14.y or rpi-4.14.y-rt, you can also use the
other branches.

https://github.com/raspberrypi/linux

N eCesSsa ry ma te ri d I S i

3. Cross-compile Tools
Raspberry Pi provide it: https://github.com/raspberrypi/tools
We use it because the environment of our VM and Raspberry Pi are different.

Mostly we use Ubuntu, which is based on Intel x86 architecture.

But Raspberry Pi uses Cortex-A53 cores, which support Armv8-A
architecture.

*If you build Kernel files on Raspberry Pi, you will not use it.

