
SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 1

Nailgun Defense Lab

1 Introduction
Nailgun [1] shows a severe vulnerability of the new debugging mechanism on the Arm architecture.
Although the device manufacturers can defend against the attack by hardware-based modification
(e.g., implementing a hardware-assisted control of the debug registers), they must launch a great
callback of the affected devices, which triggers an unacceptable expense. To avoid the huge cost,
we should design a software-level defense for Nailgun attack. Then, deploying the defense can be
implemented by a patch update via network, rather than the expensive callback.

To achieve the defense, we first decide where to place it. Considering that the attacker controls
the kernel (i.e., the Operating System), we must leverage a higher privilege to monitor or prevent
the Nailgun attack. i.e., the Secure layer or the Hypervisor layer. In this lab, we select the
Hypervisor layer to deploy the defense. Specifically, we introduce an address translation, called
Stage-2 translation. By configuring the translation regime, we prevent the access of the registers
from the kernel-level attacker, while the access of other memory regions is unaffected.

We consider the tasks of this lab as follows:

• Understand partial components of Armv8-A architecture, including the exception levels (EL)
and the translation regimes.

• Understand how to use Raspberry PI 3 Module B+, and learn to burn the Linux kernel.

• Design a defense of Nailgun, and implement it by modifying the Linux kernel.

In this lab, you are required to submit a report including 4 questions and 1 Bonus question.
The questions will be raised in the following sections.

2 Background
Before you start the lab, we strongly recommend you read this section.

2.1 Your Tools
2.1.1 Hardware

You have a Raspberry Pi. The Raspberry PI 3 Module B+ contains 4 Cortex-A53 cores, which is
Armv8-A architecture. It supports both 32-bit Armv8-A (also called aarch32) and 64-bit Armv8-A
(also called aarch64) architecture. The official kernel is compiled as 32-bit Armv8-A architecture.

2.1.2 Boot directory

In the SD card file system, it contains a directory, ”boot”, which stores the important configurations
(”config.txt”), kernel (”kernel.img” or ”kernel7.img”), device tree files (”*.dtb”), and etc. In this
lab, you should replace the kernel and necessary device tree files.

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 2

2.1.3 Source Code of Linux Kernel

In the following instructions, you should download the source codes of the Linux kernel, and compile
them. You can use the prepared files, or download it from the official website:

git clone http://github.com/raspberrypi/linux -b rpi-4.14.y

2.1.4 (Cross-compile Tools

You can compile the kernel on a virtual machine, then copy kernel image, dtb files, and modules
into the disk. However, since you want to compile a Arm-based kernel, and your virtual machine
(Ubuntu) is x86 architecture, you must use the Cross Compile tools to build the Arm files on x86
architecture.

You can use the prepared files, or download it from the official website:

git clone git://github.com/raspberrypi/tools.git

2.2 Armv8-A Exception Levels
In Figure 1, Armv8-A define four exception levels (EL0 - EL3) with different privilege, and the
higher number indicates the higher privilege. The components with higher-level privileges can
access the source (e.g., memory and registers) of lower-level privileges. Detailed usage of exception
levels are listed as follows:

• EL0: used for user applications, such as a game.

• EL1: used for the kernel, including the GPU driver, virtual address management, etc.

• EL2: used for the hypervisor, also called as virtualization layer.

• EL3: used for secure monitor (not used in our defense).

Figure 1: Armv8-A Exception Level, source from https://developer.arm.com/documentation/den0024/a/Fundamentals-
of-ARMv8

In this lab, we assume the attacker controls EL0 & EL1, and we design a defense on EL2. Note
that the EL1 attacker cannot directly access the resource in EL2 (You can try to read an EL2
register in a kernel module, and find that the module is crashed).

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 3

EL3

EL2

EL1 & EL0

VA

VA

VA

Stage-1 translation

Controlled by EL3
PA

PA

PA

Stage-1 translation

Controlled by EL2

IPA
Stage-1 translation

Controlled by EL1 & EL0 Controlled by EL2

Stage-2 translation

Figure 2: The mechanism of address translation in Armv8-A

2.3 Armv8-A Address Translation
For memory management, Armv8-A defines 3 types of address: the virtual address (VA), the inter-
mediate physical address (IPA) and the physical address (PA). Armv8-A defines Stage-1 address
translation for each exception level. Moreover, Armv8-A introduces an additional address trans-
lation for translation regime in EL0 & EL1, called the State-2 translation, which is controlled by
EL2. As described in Figure 2, the VA in EL0 & EL1 must be first translated into an IPA before
reaching a PA.

If the IPA to PA is failed, the translation will not reach a correct result. Therefore, in this
lab, we can leverage the Stage-2 translation to control the access of the physical memory regions.
Specifically, the region mapped to the debug registers.

3 Implementation
3.1 Compile the Kernel
This section tells you how to build a Linux kernel on Raspberry Pi. Specifically, we consider
building (1) a Linux kernel with the defense mechanism, and (2) device tree files (dtb files) that
contain the memory layout.

We strongly recommend you to prepare a copy of ”Raw” kernel and dtb files on disk or other
devices. Therefore, when you build a corrupted kernel in the following steps, you can restore it
quickly.

Note that we will give the instructions of ”compiling the kernel on Virtual Machine” instead
of ”compiling the kernel on Raspberry Pi”. Actually the latter choice does not require the Cross-
compile tools, but it is TOO SLOW.

3.1.1 Warn

(1) The Raspberry Pi OS with GUI (Desktop) may conflict with the replaced kernel, you should
change it as ”boot to command line”(CLI) before you replace it.

To change it, you can execute command

sudo raspi-config

Then go to ”Boot Options”, and choose the boot to CLI.
You can also configure it in the Desktop. Click the top-left raspberry icon, select ”Preference”,

then ”Raspberry Pi Configuration”. In ”System”, select ”Boot” as ”to CLI”.

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 4

(2) Moreover, you should power the Raspberry Pi with the ”Micro USB Port” instead of ”GPIO”.

3.1.2 Compile

Once you download the kernel, you can compile it. Since Raspberry PI Module 3B+ mainly
supports the 32-bit Armv8-A architecture, you define the architecture (ARCH) as arm (not arm64).

Enter the linux directory, and type the following commands. Note, in parameter CROSS_COMPILE,
you should provide the position of the cross-compile tools in YOUR COMPUTER. (See in Figure 3)

make -j8 ARCH=arm
CROSS_COMPILE=tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64\
/bin/arm-linux-gnueabihf- bcm2709_defconfig

make -j8 ARCH=arm
CROSS_COMPILE=tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64\
/bin/arm-linux-gnueabihf- menuconfig

Figure 3: Example of preparing configuration

Then, we will build the following things: (1) Image file (zImage) (2) device tree files (dtbs) (3)
modules. In parameter INSTALL_MOD_PATH, you should provide the position of the compiled
modules. (See in Figure 4 and Figure 5)

Be careful, the compilation may be stopped due to the lack of some essential tools (e.g., flex
and bison), please download them with apt-get.

mkdir ../modulespath

make -j8 ARCH=arm
CROSS_COMPILE=tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64\
/bin/arm-linux-gnueabihf- zImage dtbs modules

make -j8 ARCH=arm
CROSS_COMPILE=tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64\

/bin/arm-linux-gnueabihf- modules_install INSTALL_MOD_PATH=modulespath

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 5

Figure 4: Example of compiling kernel (1)

Figure 5: Example of compiling kernel (2)

3.1.3 Replace

After you build the kernel, you can find the image in linux directory, which is

arch/arm/boot/zImage

Figure 6: Position of the zImage

And the device tree files in

arch/arm/boot/dts/

Figure 7: Position of the device tree (for Raspberry Pi 3B+)

To replace the kernel and device tree files in the disk, we

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 6

• connect the Raspberry SD card (or USB) to your computer.

• make a linux kernel by script tool

• copy your kernel, device tree files and modules to the boot directory of the SD card

The following commands can be helpful. Note, you should provide the position of the boot
directory (BOOTDIR) in your computer.

./scripts/mkknlimg ./arch/arm/boot/zImage BOOTDIR/kernel7.img
cp BOOTDIR/kernel7.img BOOTDIR/kernel.img
cp ./arch/arm/boot/dts/bcm2710-rpi-3-b-plus.dtb BOOTDIR/
cp ./arch/arm/boot/dts/overlays/*.dtb* BOOTDIR/overlays/

Figure 8: Example of moving kenrel and dtb file

Once you replace the kernel and reboot it successfully, you can use the command ”uname -r”
to check the version of the kernel.

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 7

Figure 9: Example of successfully loading kernel

3.1.4 About the Nailgun module

You should build and install the Nailgun module with the compiled modulespath. or it would
trigger a conflict.

Here we provide an example Nailgun attack(Read_SCR). You download it and compile it
on your Ubuntu, they copy the .ko file to Raspberry Pi. Note, you should change the path of
CROSS_COMPILE, and KERNELDIR according to your modulespath.

obj-m += nailgun.o

KERNELDIR := modulespath/lib/modules/4.14.114-v7+/build

all:
make ARCH=arm -C $(KERNELDIR) M=$(PWD)

CROSS_COMPILE=tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64\
/bin/arm-linux-gnueabihf- modules

clean:
make -C $(KERNELDIR) M=$(PWD) clean

Question 1:(20%) Can you prove that (1) you have replaced the kernel (with ”uname -r” or
other approaches), and (2) you have built the nailgun module with new headers? Please provide a
figure.

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 8

Question 2:(20%) Can you run the Nailgun Attack on your new kernel? Please provide a figure.
You can use ”dmesg” to show the execution result of Nailgun Attack.

3.2 Implementation of the Defense
After you understand the steps of building a kernel, we start to implement the defense. As Men-
tioned in Section 1, we leverage the Stage-2 translation to prevent the access of the memory-mapped
interface for the debug registers. In Raspberry PI 3 Module B+, one address space of the debug
registers is 0x40030000 - 0x40030fff. Therefore, we restrict the access of this region from the kernel
and user applications.

Note, we also provide the whole modified files in modified directory.

3.2.1 Memory Reserve

We reserve a 2MB memory region for the usage of Stage-2 translation. For instance, we select
0x32000000 - 0x321fffff. Note that the region is large enough to store the page tables.

To reserve the memory, we should modify the corresponding device tree files. We insert the
codes in the device tree files (arch/arm/boot/dts/bcm2710-rpi-3-b-plus.dts)

...
aliases {
serial0 = &uart1;
serial1 = &uart0;

};

//----------insert codes start------------
reserved-memory {
#address-cells = <1>;
#size-cells = <1>;
ranges;

test_reserved: test@32000000{
compatible = ”test,test-memory”;
reg = <0x32000000 0x200000>;
no-map;

};
};

//-----------insert codes end--------------
};

&gpio {
...

Here we name the memory as test@32000000, while the start and size are provided in reg. The
attribute no-map tells the kernel not to use the region when booting, so it protects the robustness
of the system. However, if we do not implement any protection on this region, the kernel-level
attacker can still access this region via some approaches.

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 9

3.3 Codes of Defense
3.3.1 Architecture of the codes

We begin to modify the source files of the Linux kernel. The source file of booting CPUs is
arch/arm/kernel/head.S. You can find the ENTRY(stext), which contains the configurations and
codes for booting the primary CPU, and ENTRY(secondary_startup) for booting the other CPUs.

These codes have not implemented the Stage-2 translation, so we should achieve two goals:

• Creating a translation table, which entries are stored in the reserved memory (0x32000000 -
0x321fffff)

• Configure the system registers to enable the Stage-2 translation

Since we are programming with the assembly language, we should use some regular registers to
execute the add/load/store instructions. However, the kernel codes may occupy several registers
to store some information (e.g., the branch address in the following steps). If we want to use them,
we dump the values in the registers into memory and put them back later. It can be achieved by
a temporarily used register.

Our code is placed between the comments Our codes start and Our codes end. We place the
codes in two postions (primary and secondary CPUs), and you can also place your codes in other
positions. Note that the codes for primary CPU is not necessary in the Nailgun example, since
it use core 1 (a secondary core) to map the debugging registers. In our example, we can only
implement the Stage-2 translation on the secondary cores.

ENTRY(stext)
ARM_BE8(setend be) @ ensure we are in BE8 mode

THUMB(badr r9, 1f) @ Kernel is always entered in ARM.
THUMB(bx r9) @ If this is a Thumb-2 kernel,
THUMB(.thumb) @ switch to Thumb now.
THUMB(1:)

#ifdef CONFIG_ARM_VIRT_EXT
bl __hyp_stub_install
#endif

/*Our codes start*/
...
/*Our codes end*/

@ ensure svc mode and all interrupts masked
safe_svcmode_maskall r9

...

ENTRY(secondary_startup)
/*
* Common entry point for secondary CPUs.
*
* Ensure that we’re in SVC mode, and IRQs are disabled. Lookup

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 10

* the processor type - there is no need to check the machine type
* as it has already been validated by the primary processor.
*/

ARM_BE8(setend be) @ ensure we are in BE8 mode

#ifdef CONFIG_ARM_VIRT_EXT
bl __hyp_stub_install_secondary
#endif

/*Our codes start*/
...
/*Our codes end*/

@ ensure svc mode and all interrupts masked
safe_svcmode_maskall r9

mrc p15, 0, r9, c0, c0 @ get processor id
bl __lookup_processor_type
movs r10, r5
....

Here is an example, you can also use other general registers which is temporarily used. You can
find that we store the values of general registers in our reserved memory, since they are used in the
next codes. To distinguish whether the register will be used or not, please read the source code of
the kernel.

//----------insert codes start------------
/*Here we can use the regular registers r0
*and we store the value r1, r2, r3, r4, r5
*in our reserved memory
*/
ldr r0,=0x32000100
str r2,[r0]
ldr r0,=0x32000104
str r3,[r0]
ldr r0,=0x32000108
str r4,[r0]
ldr r0,=0x3200010C
str r5,[r0]
ldr r0,=0x32000110
str r1,[r0]
/*creating page table*/
...
/*configuring system registers*/
...

/*We finally fetch the values*/
ldr r0,=0x32000100
ldr r2,[r0]
ldr r0,=0x32000104
ldr r3,[r0]

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 11

ldr r0,=0x32000108
ldr r4,[r0]
ldr r0,=0x3200010C
ldr r5,[r0]
ldr r0,=0x32000110
ldr r1,[r0]
mov r0,#0 //restore r0

//-----------insert codes end--------------

Now we can use the registers r0,r2,r3,r4,r5 to achieve the defense mechanism.

3.3.2 Creating Translation Table

Figure 10: Stage-2 translation overview

Design of the Stage-2 translation table without defense

In this step, we fill the translation table into the reserved region. Simply, we create a flat
mapping between the IPA and PA of the whole address space (i.e., IPA == PA), and invalidate the
mapping of both the debug registers (0x40030000 - 0x40030fff) and the Stage-2 translation table
(0x32000000 - 0x321fffff).

A completed process of Stage-2 translation is separated into several levels (See in Figure 10).
For each level, the MMU will combine the input address with the entry (or the base address) at
the current level, and get the address of the entry at the next level.

Structure of the table entry (descriptor)

In Figure 11 and Figure 12 (you can find the attributes in page G5-6290 and G5-6291), each
entry (or called as a descriptor) indicates the attributes (e.g., read permission, write permission,
and access permission) of specific address space. You can also find the partial component of the
address related to the next-level entry (descriptor) or the output. In particular, we care about the

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 12

last two bits (bit[1:0]) of the entry, because they will tell us whether the translation should continue
or stop.

• If we find a block or page, the translation is finished and will return the value.

• If we find an invalid entry, the translation is finished and will return a fault.

• If we find a table, the translation should continue.

Figure 11: Structure of the level 1 & 2 table entry (descriptor)

Example of a table walk

Here we provide an explanation of a translation starting at level 1 in Figure 13. The correspond-
ing Picture is provided in K7-8498 on the Armv8-A manual since Stage-2 translation implements
the Long-descriptor format on the Aarch32 translation regime. Note that n=5 in the picture.

When MMU receives the translation requirement and the input IPA, it separates the IPA into
4 parts for the use of 3 levels. In level 1, MMU combines the first part of input IPA and the base
address of the Stage-2 translation table, then calculates the address of the level-1 entry. The last
two bits of the entry tell MMU whether the translation should continue, stop or return a fault. If
we continue the translation, MMU combines the second part of the IPA with the level-1 entry to
get the region of the address of the level-2 entry. Finally, the level-3 entry tells the translation is
valid or not. If the translation is valid, MMU combines the level-3 entry and the last component
of the IPA (we can regard it as offset) to get the output result.

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 13

Figure 12: Structure of the level 3 table entry (descriptor)

Example of the codes

Here we assume the base address of the Stage-2 translation table as 0x32000000 and give an
example of the Stage-2 translation for the region 0x80000000 - 0xbfffffff.

ldr r0,=0x32000010
ldr r1,=0x800007FD
str r1,[r0]
add r0, r0, #4
ldr r1,=0x00400000
str r1,[r0]

The above codes mean that we store the entry 0x0040_0000_8000_04FD in the region 0x32000010
- 0x32000017. The last 2 bits indicate it as a block, which means the translation is finished here.
For a input IPA 0x81234567, the level 0 will combine bit[31:30] of IPA and bit[31:5] of the base
address, then tell we to read the address 0x32000000 + (0x2 «3) = 0x32000010. Then, we get the
level-1 entry by reading the value in this address. With the bit[1:0] of this entry, we know it is a
block (you can see Armv8-A manual on page G5-6290), not a table. So, our translation is finished,
the output address is composed of two parts. Its bit[31:30] is from the entry, and bits[29:0] is from
the input address. You can calculate it, and know that the value of the output address is the same
as the input address.

Not done yet

Although the given example is easy to follow, we must configure the corresponding entries with
smaller granules (i.e., the translation should not stop in level 1), since we consider protecting a 4KB
region and a 2MB region, rather than a 1GB region. To protect the 2MB region (it is the Stage-2
translation table, 0x32000000 - 0x321fffff), we should separate the 1GB region, 0x0 - 0x3fffffff into
512 2MB-sized regions. If we want to protect the 4KB region (it is the debug registers, 0x40030000 -
0x40030fff), we should separate the 2MB region, 0x40000000 - 0x401fffff into 512 4KB-sized regions.
If not, we may protect an unexpected address space.

Defense implementation

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 14

Figure 13: A translation example

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 15

Finally, we implement the protection of these regions by setting the last bit of the corresponding
entry as 0, because in Figure 11 and 12, if the last bit (bit[0]) of an entry is 0, then it indicates an
invalid entry. Therefore, when the MMU performs the Stage-2 translation for the access of these
regions, it finally finds an invalid entry and returns a translation fault.

3.3.3 Configuring the System Registers

We consider to configure three significant registers: VTTBR, which indicates the base address of
the Stage-2 translation; HCR, which enables the Stage-2 translation; VTCR, which indicates some
attributes of the translation. If you are interested in the functions of such system registers, please
read the reference manual.

First, we fill the VTTBR register, we directly put the start address (0x32000000) into the
BADDR bits:

ldr r0,=0x32000000
ldr r1,=0x0
mcrr p15, 6, r0, r1, c2

We then fill the VTCR register. We mainly care about the T0SZ and SL0 bits, which indicate
the region size and starting level, respectively:

ldr r1,=0x80000040
mcr p15, 4, r1, c2, c1, 2

Finally, we configure the last bit (VM) of the HCR as 1 to enable the Stage-2 translation:

mrc p15, 4, r0, C1, C1, 0
orr r0, r0, #0x1
mcr p15, 4, r0, C1, C1, 0

Question 3:(30%) With the provided source codes, can you explain the process of traslating an
IPA, 0x40030000+”last 3 numbers of your student ID”, to the same value of PA? (e.g., if your ID
is 12150073, then you should translate 0x40030073). In this question, you should mention the (1)
address of each descriptor, and (2) value of each descriptor.

Question 4:(30%) With the provided source codes, can you explain the process of traslating an
IPA, 0x40000000+”last 7 numbers of your student ID”, to the same value of PA? (e.g., if your ID
is 12150073, then you should translate 0x42150073). In this question, you should mention the (1)
address of each descriptor, and (2) value of each descriptor.

Question 5:(20% Bonus) If we have reserved a 4KB memory space (0xa000_0000 0xa000_0fff),
and we want to forbid EL1&0 to access it, what can we do? You need to (1) submit the ”head.S”
file, and (2)explain how the Stage-2 translation work on your translation table. For example, you
can use an IPA 0xa0000120, and explain how the access failed.

4 Evaluation
4.1 Effectiveness Evaluation
To prove the effectiveness, we first load a Nailgun kernel module on the Raspberry PI to prove the
vulnerability. Then, we burn the kernel with the defense on the same Raspberry PI and load the
Nailgun kernel module.

SUSTech CS 315 Computer Security Course Labs – Nailgun Defense Lab 16

Once the module is loaded, the system will hang (or crash) since (1) it generates a translation
fault or so-called as an exception (2) the corresponding exception handler asks to jump to the
current address (in assembly language is ”b .”), and triggers an endless loop. The Linux kernel
does not process the exceptions well in EL2 or EL3.

References
[1] Z. Ning and F. Zhang, “Understanding the security of arm debugging features,” in 2019 IEEE

Symposium on Security and Privacy (SP). IEEE, 2019, pp. 602–619.

