

802.11 Security & Pen Testing

Fengwei Zhang Constantinos Kolias

Wireless Communications: Advantages & Disadvantages

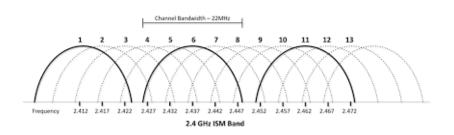
- Makes communication possible where cables don't reach
- Convenience
- BUT
 - The air medium is open to everyone
 - The boundaries of a transmission cannot be confined

Hacker News @newsycombinator · 11m

Thai Minister Orders Cafes, Restaurants to Collect Customers' WiFi Data

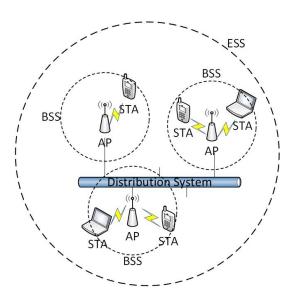
Digital Minister Orders Cafes, Restaurants To Collect Customers' Wifi Data BANGKOK — A minister said on Tuesday cafe and restaurant operators with free wifi service must collect internet traffic data used by their ... & khaosodenglish.com

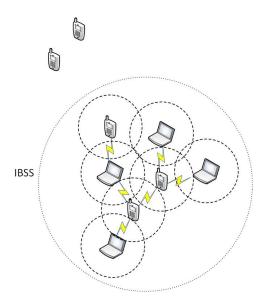
SUSTech


WiFi

- Commercial name of the protocol IEEE 802.11
- It is one of the most ubiquitous wireless networks
 - Home Networks
 - Enterprise Networks
- Communication is based on frames
- Essentially is sequence of bits
 - 802.11 defines the meaning
 - Vendors implement the protocol
- 2.4Ghz Industrial Scientific Medical (ISM) and 5Ghz
- Range depends on transmission power, antenna type, the country, and the environment
 - Typical 100ft

Channels


- The equipment can be set in only one channel at a time
- Each country has its own rules
 - Allowed bandwidth
 - Allowed power levels
- Stronger signal is preferred



Deployment Architectures

Infrastructure

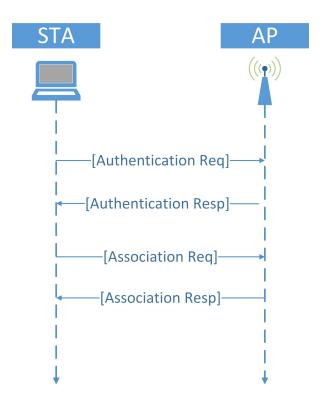
P2P/Ad-hoc

802.11 Header Structure

			8	802.11 N	IAC he	ader					_		
	Frame Control		iration ID	Address 1	Address 2		Address 3		uence ntrol	Address 4	Netw	Network Data	
	2 Byte	2 Bytes 2		6 Bytes	6 Bytes	6 Bytes		2 Bytes		6 Bytes	0 to 2	312 Byte	s 4 Bytes
/													
	otocol rsion	Туре		Subtype	To DS	From DS	Moi Fra		Retry	Power Mgmt	More Data	WEP	Order
2	bits	2 bit	6	4 bits	1 bit	1 bit	1 bi	it	1 bit	1 bit	1 bit	1 bit	1 bit

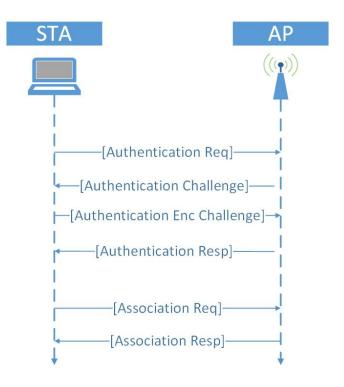
Frame Types

- Management
 - Initialization, maintain and finalization
- Control
 - Management of the data exchange
- Data
 - Encapsulation of information
- http://www.willhackforsushi.com/papers/80211_Pocket _Reference_Guide.pdf

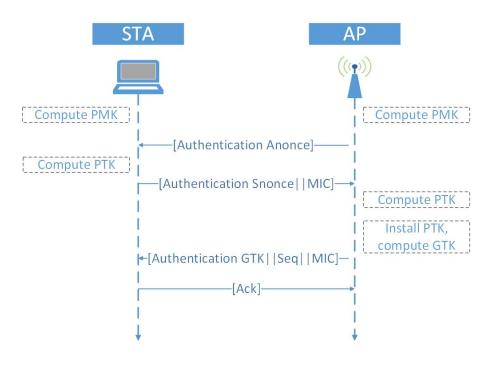

Type Value b3 b2	Type Description	Subtype Value b7 b6 b5 b4			Subtype Description			
0 0	Management	0	0 0	Q.	Association Request	2		
0 0	Management	0	0 0	1	Association Response	2		
0 0	Management	0	0 1	0	Re-association Request	2		
0 0	Management	0	0 1	1	Re-association Response	2		
0 0	Management	0	1 0	0	Probe Request	1		
0 0	Management	0	1 0	1	Probe Response	1		
0 0	Management	1	0 0	0	Beacon	1		
0 0	Management	1	0 0	1	Announcement Traffic Indication Message (ATIM)	1		
0 0	Management	11 - S	0 1	0	Disassociation	2		
0 0	Management	1	0 1	3	Authentication	1		
0 0	Management	1	1 0	Q	De-authentication	2,3		
0 1	Control	1	0 1	0	Power Save Poll (PS-Poll)	3		
0 1	Control	1.	0 1	1	Request to Send (RTS)	1		
0 1	Control	1	1 0	0	Clear to Send (CTS)	. 1		
0 1	Control	1	1 0	1	Acknowledgment (ACK)	1		
0 1	Control	1	1 1	0	Contention Free End (CF-End)	1		
0 1	Control		1 1	1	CF-End + CF-ACK	1		
1 0	Data	0	0 0	0	Data	3,1		
1 0	Data	0	a . o	4	Data + CF-ACK any PCF-capable STA or the Point Coordinator (PC)	3		
1 0	Data	0	0 4	þ.	Data + CF-Poll only the Point Coordinator (PC)	3		
1 0	Data	0	0 1	h	Data + CF-ACK + CF-Poll only the Point Coordinator (PC)	3		
1 0	Data	0	1 0	p	Null Function (no data)	3		
1 0	Data	0	1 0	1	CF-ACK (no data) any PCF-capable STA or the Point Coordinator (PC)	. 3		
1 0	Data	a	11	Þ	CF-Poll (no data) only the Point Coordinator (PC)	3		
1 0	Data	0	14	р.,	CF-ACK + CF-Poll (no data) only the Point Coordinator (PC)	3		
1 0	Data	1	0 0	0	OoS Data	3,1		
1 0	Data	12	0 0	1	QoS Data + CF-ACK any PCF-capable STA or the Point Coordinator (PC)	3		
1 0	Data	2	0 1	0	QoS Data + CF-Poll only the Point Coordinator (PC)	3		
1 0	Data	2	0 1	1	QoS Data + CF-ACK + CF-Poll only the Point Coordinator (PC)	3		
1 0	Data	2	3 0	p	QoS Null Function (no data)	3		
1 0	Data	2	2 0	4	QoS CF-ACK (no data) any PCF-capable STA or the Point Coordinator (PC)	3		
1 0	Data	Z	2 2	0	QoS CF-Poll (no data) only the Point Coordinator (PC)	3		
1 0	Data	2	1 1	1	QoS CF-ACK + CF-Poll (no data) only the Point Coordinator (PC)	3		

802.11 Security Modes: Open Access

Open Access


- No protection (whitelists)

802.11 Security Modes: WEP

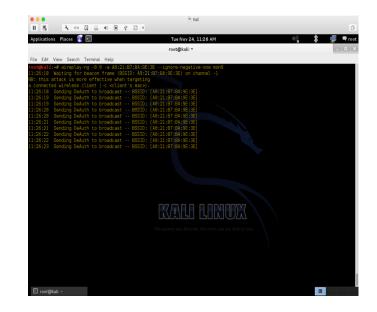

- Based on RC4 Encryption
- Broken

802.11 Security Modes: WPA/WPA2

- Based on AES
- Much more secure
- Current standard

Lab Setup

- External card
 - Alpha AWUS036H
 - Provides stronger signal
- AP
 - WNDR3700
 - WNR1000
 - Linksys WRT54GL
- OS
 - Kali Linux on VM
 - Software pen-testing tools


Deauthentication Frames

- Deauthentication frame is a management frame
 - Unencrypted
 - Can easily be spoofed
- Demands all or a specific client to drop to unauthendicated/unassociated state
 - It is not a request it must be accepted
 - The client will attempt to reconnect again
 - The attacker will repeat the process
- For a complete survey of 802.11 DoS attacks refer to [2]

Deauthentication Attack in Practice

- Most basic DoS attack
- Can target specific clients
 - More efficient
 - More stealthy
- Can be broadcast
 - More massive effect
- Cannot be avoided
- Decide the MAC of victim
 - airmon-ng <interface>
- Transmit Deauthentication Frames
 - aireplay-ng -0 <quantity> -a <AP MAC
 Address> <interface>
- Task: Deauthenticate a specific client from the a victim AP

Beacon Frames

- Advertise the presence of an AP in the area
- Transmitted every interval by the AP
- They contain important details about the AP
 - Name of the network (ESSID)
 - Security capabilities
- Beacons are management frames
 - No protection
 - One can forge (capture, copy, alter, transmit) such frames easily
- By forging Beacons with a real ESSID but fake BSSID, may even result to DoS [3]

Evil Twin

Fake AP with the same ESSID and MAC as the victim AP

- Usually open

- Channel all the traffic of clients through it
 - Attacker will act as man-in-the-middle
 - Monitor traffic
 - Inject packets
- Most modern OS will warn users

Evil Twin in Practice

- Deduce MAC address of victim AP
 - airodump-ng <wireless interface>
- Increase the power of your card
 - ifconfig <interface> down
 - iw reg set <region code>
 - ifconfig <interface> up
 - iw reg get
- Set up fake AP
- Disconnect all users from valid AP
 - aireplay-ng -0 <quantity> -a <AP MAC> <wireless interface>
- Monitor traffic
 - wireshark &