
2019-2020 Fall Semester CS102A

1

Introduction to Computer Programming (Java A)
Lab 13

[Objective]
 Learn implementing generic class.
 Learn recursion

[Exercises]
1. Generic Classes
Stack and Queue are two widely used data structures. Stack has the
property LIFO (last in first out), while Queue has the property FIFO (first
in first out). In this lab, you are required to implement two generic
classes: Stack<E> and Queue<E>. You should define the operations push
and pop in the Stack class and enqueue and dequeue in the Queue class.
Under the hood, you can use an ArrayList to store data items. The
following figures show you the data structures.

2019-2020 Fall Semester CS102A

2

Requirements:
The generic class Stack<E> should contain the following methods:
 push: this method pushes a data item onto the stack
 pop: this method pops the latest added data item from the stack. The

method may throw runtime exceptions when it is invoked on an
empty stack.

 hasItems: this method returns true if the stack is not empty and false
otherwise.

The generic class Queue<E> should contain the following methods:
 enqueue: this method adds a new data item into the queue.
 dequeue: this method returns the oldest data item from the queue

and returns it.
 hasItems: this method returns true if the queue is not empty and

false otherwise.

We provide two classes for testing: TestStudent and Student. Please run
the main method in the TestStudent class and see if it prints the
expected result. If yes, your implementation is likely correct.

Copy the following code to Student.java
public class Student
{ private String
firstName; private String
lastName; private Gender
gender;
public Student(String firstName, String lastName, Gender gender)
{ this.firstName = firstName;
this.lastName = lastName;
this.gender = gender;

}

public String toString() {
return String.format("%s%s, %s", firstName, lastName, gender);

}
}
enum Gender
{ MALE,

}

Copy the following code to TestStudent.java
public class TestStudent {
public static void main(String[] args) throws Exception
{ Student s1 = new Student("Harry", "Potter",
Gender.MALE); Student s2 = new Student("Ron", "Weasley",
Gender.MALE);
Student s3 = new Student("Hermione", "Granger", Gender.FEMALE);
// test queue implementation
Queue<Student> queue = newQueue<Student>();
queue.enqueue(s1);
queue.enqueue(s2);
queue.enqueue(s3);
System.out.println("---Queue: first in first out---");

2019-2020 Fall Semester CS102A

3

while(queue.hasItems())
{ System.out.println(queue.dequeue());

}

// test stack implementation
Stack<Student> stack = newStack<Student>();
stack.push(s1);
stack.push(s2);
stack.push(s3);
System.out.println("---Stack: last in first out---");
while(stack.hasItems()) {
System.out.println(stack.pop());

}
}

}

Expected output:
---Queue: first in first out---
Harry Potter, MALE
Ron Weasley, MALE
Hermione Granger, FEMALE
---Stack: last in first out---
Hermione Granger, FEMALE
Ron Weasley, MALE
Harry Potter, MALE

To ease your task, the template code for Stack.java is given to you:
import java.util.ArrayList;

public class Stack<E> {
private ArrayList<E> items = new ArrayList<E>();

public void push(E item) {
// fill in your code here

}

public E pop() {
// fill in your code here

}

public boolean hasItems() {
// fill in your code here

}
}

2. Recursion

In linear algebra, the determinant is a scalar value that can be computed from
the elements of a square matrix and encodes certain properties of the linear
transformation described by the matrix. The determinant of a matrix A is
denoted det(A), det A, or |A|. In the case of a 2 × 2 matrix the determinant may be
defined as

https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Linear_map

2019-2020 Fall Semester CS102A

4

Similarly, for a 3 × 3 matrix A, its determinant is

For a 4 × 4 matrix, its determinant can be decomposedas

Implement the following function where the input argument is a N x N square
matrix (N >= 1) represented by a two-dimensional array:

public int determinant (int[][] a) {

// write your code here

// return the determinant to the caller of this method

}

To test your code, the determinant of the following 5 x 5 matrix is28

	Introduction to Computer Programming (Java A)
	Requirements:

