
Public Key Cryptography

Introduction

• Foundation of today’s secure communication

• Allows communicating parties to obtain a shared secret key

• Public key (for encryption) and Private key (for decryption)

• Private key (for digital signature) and Public key (to verify signature)

Brief History Lesson

• Historically same key was used for encryption and decryption
• Challenge: exchanging the secret key (e.g. face-to-face meeting)
• 1976: Whitfield Diffie and Martin Hellman

• key exchange protocol
• proposed a new public-key cryptosystem

• 1978: Ron Rivest, Adi Shamir, and Leonard Adleman (all from MIT)
• attempted to develop a cryptosystem
• created RSA algorithm

Outline

• Public-key algorithms

• Diffie-Hellman key exchange

• RSA algorithm

• Digital signature

• Public-key infrastructure

• SSL/TLS protocol

Diffie-Hellman Key Exchange

• Allows communicating parties with no prior knowledge to exchange
shared secret keys over an insecure channel

• Alice and Bob want to communicate
• Alice and Bob agree on:

• Number p: big prime number (such as a 2048-bit number)
• Generator g: small prime number (such as 2 and 3)

• Alice picks a random positive integer x < p
• Bob picks a random positive integer y < p

Diffie-Hellman Key Exchange (Contd.)

Turn DH Key Exchange into a Public-Key
Encryption Algorithm

• DH key exchange protocol allows exchange of a secret

• Protocol can be tweaked to turn into a public-key encryption

scheme

• Need:

• Public key: known to the public and used for encryption

• Private key: known only to the owner, and used for decryption

• Algorithm for encryption and decryption

Turn DH Key Exchange into a Public-Key
Encryption Algorithm (Contd.)

RSA Algorithm

We will cover:

• Modulo Operation

• Euler’s Theorem

• Extended Euclidean Algorithm

• RSA Algorithm

• Algorithm example on small and large number

Modulo Operation

• The RSA algorithm is based on modulo operations
• a mod n is the remainder after division of a by the modulus n
• Second number is called modulus
• For example, (10 mod 3) equals to 1 and (15 mod 5) equals to 0
• Modulo operations are distributive:

Euler’s Theorem

• Euler’s totient function φ(n) counts the positive integers up to a
given integer n that are relatively prime to n

• φ(n) = n − 1, if n is a prime number.
• Euler’s totient function property:

• if m and n are relatively prime, φ(mn) = φ(m) ∗ φ(n)

• Euler’s theorem states:
• a φ(n) = 1 (mod n)

Euler’s Theorem (Contd.)

Example: to calculate 4 100003 mod 33

• φ(33) = φ(3) ∗ φ(11) = (3 − 1) ∗ (11 − 1) = 20
• 100003 = 5000φ(33) + 3

Extended Euclidean Algorithm

• Euclid’s algorithm: efficient method for computing GCD
• Extended Euclidean algorithm:

• computes GCD of integers a and b
• finds integers x and y, such that: ax + by = gcd(a, b)

• RSA uses extended Euclidean algorithm:
• e and n are components of public key
• Find solution to equation:
e ∗ x + φ(n) ∗ y = gcd(e, φ(n)) = 1

• x is private key (also referred as d)
• Equation results: e ∗ d mod φ(n) = 1

RSA Algorithm

We will cover:

• Key generation

• Encryption

• Decryption

RSA: Key Generation

• Need to generate: modulus n, public key exponent e, private key
exponent d

• Approach
• Choose p,q (large random prime numbers)
• n = pq (should be large)
• Choose e, 1 < e < φ(n) and e is relatively prime to φ(n)
• Find d, ed mod φ(n) = 1

• Result
• (e,n) is public key
• d is private key

RSA: Encryption and Decryption

• Encryption
• treat the plaintext as a number
• assuming M < n
• C = Me mod n

• Decryption
• M = Cd mod n

RSA Exercise: Small Numbers

• Choose two prime numbers p = 13 and q = 17
• Find e:

• n = pq = 221
• φ(n) = (p − 1)(q − 1) = 192

• choose e = 7 (7 is relatively prime to φ(n))
• Find d:

• ed = 1 mod φ(n)

• Solving the above equation is equivalent to: 7d + 192y = 1
• Using extended Euclidean algorithm, we get d = 55 and y = −2

RSA Exercise: Small Numbers (Contd.)
Encrypt M = 36

Cipher text (C) = 179

RSA Exercise: Small Numbers (Contd.)

Hybrid Encryption

• High computation cost of public-key encryption
• Public key algorithms used to exchange a secret session key
• Key (content-encryption key) used to encrypt data using a

symmetric-key algorithm

Using OpenSSL Tools to Conduct RSA
Operations

We will cover:

• Generating RSA keys

• Extracting the public key

• Encryption and Decryption

OpenSSL Tools: Generating RSA keys
Example: generate a 1024-bit public/private key pair
• openssl genrsa -aes128 -out private.pem 1024
• private.pem: Base64 encoding of DER generated binary output

OpenSSL Tools: Generating RSA keys (Contd.)
Actual content of private.pem

OpenSSL Tools: Extracting Public Key

• openssl rsa -in private.pem -pubout > public.pem

• Content of public.pem:

OpenSSL Tools: Encryption and Decryption
• Plain Text

• Encryption

• Decryption

Paddings for RSA

• Secret-key encryption uses encryption modes to encrypt plaintext
longer than block size.

• RSA used in hybrid approach (Content key length << RSA key length)
• To encrypt:

• short plaintext: treat it a number, raise it to the power of e (modulo n)
• large plaintext: use hybrid approach (treat the content key as a number and

raise it to the power of e (modulo n)
• Treating plaintext as a number and directly applying RSA is called

plain RSA or textbook RSA

Attacks Against Textbook RSA

• RSA is deterministic encryption algorithm
• same plaintext encrypted using same public key gives same ciphertext
• secret-key encryption uses randomized IV to have different ciphertext for

same plaintext
• For small e and m

• if me < modulus n
• e-th root of ciphertext gives plaintext

• If same plaintext is encrypted e times or more using the same e but
different n, then it is easy to decrypt the original plaintext message
via the Chinese remainder theorem

Paddings: PKCS#1 v1.5 and OAEP

• Simple fix to defend against previous attacks is to add randomness

to the plaintext before encryption

• Approach is called padding

• Types of padding:

• PKCS#1 (up to version 1.5): weakness discovered since 1998

• Optimal Asymmetric Encryption Padding (OAEP): prevents attacks on PKCS

• rsautl command provides options for both types of paddings

(PKCS#1 v1.5 is default)

PKCS Padding

• Plaintext is padded to 128 bytes
• Original plaintext is placed at the end of the block
• Data inside the block (except the first two bytes) are all random

numbers
• First byte of the padding is always 00 (so that padded plaintext as

integer is less than modulus n)
• Second byte is 00, 01, and 02 (different strings used for padding for

different types)

PKCS Padding (Contd.)

OAEP Padding

• Original plaintext is not directly copied into the encryption block
• Plaintext is XORed with a value derived from random padding data

Digital Signature

• Goal: provide an authenticity proof by signing digital documents
• Diffie-Hellman authors proposed the idea, but no concrete solution
• RSA authors developed the first digital signature algorithm

Digital Signature using RSA

• Apply private-key operation on m using private key, and get a
number s, everybody can get the m back from s using our public key

• For a message m that needs to be signed:

Digital signature = md mod n

• In practice, message may be long resulting in long signature and
more computing time

• Instead, we generate a cryptographic hash value from the original
message, and only sign the hash

Digital Signature using RSA (Contd.)
Generate message hash

Digital Signature using RSA (Contd.)
Generate and verify the signature

Attack Experiment on Digital Signature

• Attackers cannot generate a valid signature from a modified
message because they do not know the private key

• If attackers modifies the message, the hash will change and it will
not be able to match with the hash produced from the signature
verification

• Experiment: modify 1 bit of signature file msg.sig and verify the
signature

Attack Experiment on Digital Signature
(Contd.)
After applying the RSA public key on the signature, we get a block of
data that is significantly different

Programming using Public-Key Cryptography
APIs
• Languages, such as Python, Java, and C/C++, have well-developed

libraries that implement the low-level cryptographic primitives for
public-key operations

• Python:
• no built-in cryptographic library
• use Python packages (e.g. PyCryptodome)

• We will cover:
• Key Generation
• Encryption and Decryption
• Digital Signature

Public-Key Cryptography APIs:
Key Generation
• Python example (next slide) using Python Crypto APIs to generate a

RSA key and save it to a file
• Lines in code:

• Line (1): generate a 2048-bit RSA key
• Line (2): export key() API serializes the key using the ASN.1 structure
• Line (3): extract public-key component

Public-Key Cryptography APIs:
Key Generation (Contd.)

Public-Key Cryptography APIs: Encryption

• To encrypt a message using public keys, we need to decide what
padding scheme

• For better security, it is recommended that OAEP is used
• Lines in code (example on next slide):

• Line (1): import the public key from the public-key file
• Line (2): create a cipher object using the public key

Public-Key Cryptography APIs: Encryption
(Contd.)

Public-Key Cryptography APIs: Decryption
Uses the private key and the decrypt() API

Public-Key Cryptography APIs: Digital
Signature
• In Python code, one canuse PyCryptodome library’s

Crypto.Signature package
• Four supported digital signature algorithms:

• RSASSA-PKCS1-v1_5
• RSASSA-PSS
• DSA
• RSASSA-PSS

• Show example with RSASSA-PSS

Public-Key Cryptography APIs: Digital
Signature using PSS

• Probabilistic Signature Scheme (PSS) is a cryptographic signature
scheme designed by Mihir Bellare and Phillip Rogaway

• RSA-PSS is standardized as part of PKCS#1 v2.1
• Sign a message in combination with some random input.
• For same input:

• two signatures are different
• both can be used to verify

Public-Key Cryptography APIs: Digital
Signature using PSS (Contd.)
• Lines in code example:

• line (1): create a signature object
• line (2): generate the signature for the hash of a message

Applications

We will cover:

• Authentication

• HTTPS and TLS/SSL

• Chip Technology Used in Credit Cards

Applications: Authentication

• Typical way to conduct authentication is to use passwords

• Disadvantage:

• A sends password to B: B can get hacked and A may use same password for

multiple accounts

• cannot be used for many parties to authenticate a single party

• Fundamental problem: password authentication depends on a

shared secret

Applications: Authentication (Contd.)

Solution:
• Making the encryption and decryption keys different
• generate the authentication data using one key, and verify the data using a

different key

Applications: Authentication (Contd.)

SSH Case Study

• SSH uses public-key based authentication to authenticate users
• Generate a pair of public and private keys: ssh-keygen -t rsa

• private key: /home/seed/.ssh/id_rsa
• public key: /home/seed/.ssh/id_rsa.pub

• For Server:
• send the public key file to the remote server using a secure channel
• add public key to the authorization file~/.ssh/authorized_keys
• Server can use key to authenticate clients

Applications: HTTPS and TLS/SSL

• HTTPS protocol is used to secure web services

• HTTPS is based on the TLS/SSL protocol (uses both public key

encryption and signature

• encryption using secret-key encryption algorithms

• public key algorithms are mainly used for key exchange

Applications: HTTPS and TLS/SSL (Contd.)

Applications: Credit Card Chip

• Past: cards store card information in magnetic stripe (easy to clone)
• With Chip:

• chips can conduct computations and store data (not disclosed to outside)
• EMV standard (Europay, MasterCard, and Visa)

• We will cover how public key technologies are used for:
• Card authentication
• Transaction authentication

Applications: Credit Card Chip Authentication
• Card contains a unique public and private key pair

• Private key is protected and will never be disclosed to the outside
• Public key is digitally signed by the issuer, so its authenticity can be verified

by readers

Applications: Credit Card Transaction
Authentication
• Issuer needs to know whether the transaction is authentic
• Transaction needs to be signed by the card using its private key
• Verified Signature:

• To issuers: card owner has approved the transaction
• To honest vendor: enables the vendor to save the transactions and submit

them later

Summary

We covered:

• the basics of public key cryptography
• both theoretical and practical sides of public key cryptography
• RSA algorithm and the Diffie-Hellman Key Exchange
• tools and programming libraries to conduct public-key operations
• how public key is used in real-world applications

