K\T\(lﬁ

Lab 2: Buffer Overflows

Fengwei Zhang

Wayne State University Course: Cyber Security Practice 1

K\sr\(/ﬁ

Buffer Overflows

e One of the most common vulnerabilities in
software

* Programming languages commonly associated
with buffer overflows including C and C++

* Operating systems including Windows, Linux
and Mac OS X are written in C or C++

K\sr\(/ﬁ

How It Works

* Applications define buffers in the memory
— Unsigned char [10]

* Applications use adjacent memory to store
variables, arguments, and return address of a
function.

 Buffer Overflows occurs when data written to
a buffer exceeds its size.

K\sr\(/ﬁ

Overflowing A Buffer

* Defining a bufferin C
— char buf[10];

* Overflowing the buffer
— Char buf [10] = X’;
— strcpy(buf, “AAAAAAAAAAAAAAAAAAAAAAA”)

K\sr\(/ﬁ

Why We Care

* Because adjacent memory stores program
variables, parameters, and arguments

e Attackers can change these values through
overflowing a buffer

e Attackers can gain control over the program
flow to execute arbitrary code

Ky\(lﬁ
Process Memory Layout

High memory

Heap

Data Segment

Low memory ——af [

Wayne State University Course: Cyber Security Practice 6

s/

Memory Layout for 32-bit Linux

1GB — Kernel Space

Local variable: int a

3GB — Heap Function malloc()

BSS Segment Uninitialized static variables: static char *u

Data Segment static char *s = “Hello world”

Text Segment (ELF) Binary of the program

Wayne State University Course: Cyber Security Practice 7

Virtual Memory Layout

Wayne State University

Text

Read only data

Initialized data

Text

Initialized data

BSS: initialized
data

System.map-2.6.
32

R sys_call_table c12ad130

D idt_table

T i386_start_kernel

Course: Cyber Security Practice

Kxﬁ

K\sr\(/ﬁ
Stack Frame

* The stack contains activation frames including
local variables, function parameters, and
return address

e Starting at the highest memory address and
growing downwards

e Lastin first out

KZT\(/W
A Simple Program

Add (2,3)

High memory

3
int add (int a, int b) 2
{ _Ret Address -
int c; EBP

c=1+b; C
return c;

Low memory ESP

Wayne State University Course: Cyber Security Practice 10

K\T\(lﬁ
Another Program

int func (char * str)

{
char mybuff[512];
strcpy(myBuff, str);
;e Draw the Stack Frame!
int main (int argc, char ** argv)
{
func (argv[1]);
return 1;
}

Wayne State University Course : Cyber Security Practice 11

Ky\(lﬁ
Overflowing “myBuff”

High memory

(A)
str(A)
Ret addr(A)
EBP(A)

JA

Low memory ESP

Wayne State University Course: Cyber Security Practice 12

Ksz//
Buffer Overflow Defenses

* The attack described is a classical stack smashing
attack which execute the code on the stack

* |t does not work today

— NX — non-executable stack. Most compilers now
default to a non-executable stack. Meaning a
segmentation fault occurs if running code from the
stack (i.e., Data Execution Prevention - DEP)

» Disable it with —zexecstack option

e Check it with readelf —e <PROGRAM> | grep STACK
— StackGuard: Cannaries

* Disable it with —fno-stack-protector option

e Enable it with —fstack-protector option

K\sr\(/ﬁ
Stack Canaries

* Stack smashing attacks do two things
— Overwrite the return address
— Wait for algorithm to complete and call RET

* Stack Canaries: Stack Smashing Protector (SSP)

— Placing a integer value to stack just before the return
address

— To overwrite the return address, the canary value
would also be modified

— Checking this value before the function returns

Ky\(lﬁ
Stack Canaries (cont’d)

High memory

(A)
str(A)
Ret addr(A)
EBP(A)

Low memory ESP

Wayne State University Course: Cyber Security Practice 15

K\sr\(/ﬁ

Bypassing NX and Canaries

* NX - non-executable stack
— Executing code in the heap
— Data Execution Prevention (DEP)
— Return Oriented Programming (ROP)

 Stack Canaries

— Overwriting the Canary with the same value
— Brute force attack (e.g., DynaGuard in ACSAC’15)

K\sr\(/ﬁ

Reminders
e LabO
— Turn in the class agreement
* Lab1

— Due today at 11:59pm

— Late assighment policy
— Submit it via Blackboard

e Lab 2 instructions

