
Nailgun: Breaking the Privilege Isolation on ARM

Zhenyu Ning

COMPASS Lab
Wayne State University

Sep 23, 2019

Nailgun: Breaking the Privilege Isolation on ARM 1



Outline

I Background

I Introduction

I Obstacles for Misusing the Traditional Debugging

I Nailgun Attack

I Mitigations

I Conclusion

Nailgun: Breaking the Privilege Isolation on ARM 2



Outline

I Background

I Introduction

I Obstacles for Misusing the Traditional Debugging

I Nailgun Attack

I Mitigations

I Conclusion

Nailgun: Breaking the Privilege Isolation on ARM 3



Background

Breaking the Privilege Isolation on ARM

Nailgun: Breaking the Privilege Isolation on ARM 4



Background

Breaking the Privilege Isolation on ARM

Nailgun: Breaking the Privilege Isolation on ARM 5



Background

Breaking the Privilege Isolation on ARM

Nailgun: Breaking the Privilege Isolation on ARM 6



ARM

What is ARM?

I In Dictionary: Hands, or weapons.

I Company: ARM was a British semiconductor company, now
owned by SoftBank.

I Architecture: ARM is a processor architecture designed by
ARM company.

Nailgun: Breaking the Privilege Isolation on ARM 7



ARM

What is ARM?

I In Dictionary: Hands, or weapons.

I Company: ARM was a British semiconductor company, now
owned by SoftBank.

I Architecture: ARM is a processor architecture designed by
ARM company.

Nailgun: Breaking the Privilege Isolation on ARM 8



ARM

What is ARM?

I In Dictionary: Hands, or weapons.

I Company: ARM was a British semiconductor company, now
owned by SoftBank.

I Architecture: ARM is a processor architecture designed by
ARM company.

Nailgun: Breaking the Privilege Isolation on ARM 9



ARM

What is ARM?

I In Dictionary: Hands, or weapons.

I Company: ARM was a British semiconductor company, now
owned by SoftBank.

I Architecture: ARM is a processor architecture designed by
ARM company.

Nailgun: Breaking the Privilege Isolation on ARM 10



ARM

What is ARM?

I In Dictionary: Hands, or weapons.

I Company: ARM was a British semiconductor company, now
owned by SoftBank.

I Architecture: ARM is a processor architecture designed by
ARM company.

Nailgun: Breaking the Privilege Isolation on ARM 11



Background

Breaking the Privilege Isolation on ARM

Nailgun: Breaking the Privilege Isolation on ARM 12



Privilege Isolation

What is Privilege Isolation?

I Privilege In Dictionary: A special right, advantage, or
immunity granted or available only to a particular person or
group.

I Isolation In Dictionary: The process or fact of isolating or
being isolated.

I In Company: CEO is able to view all the classified docs, but
coders can not.

Nailgun: Breaking the Privilege Isolation on ARM 13



Privilege Isolation

What is Privilege Isolation?

I Privilege In Dictionary: A special right, advantage, or
immunity granted or available only to a particular person or
group.

I Isolation In Dictionary: The process or fact of isolating or
being isolated.

I In Company: CEO is able to view all the classified docs, but
coders can not.

Nailgun: Breaking the Privilege Isolation on ARM 14



Privilege Isolation

What is Privilege Isolation?

I Privilege In Dictionary: A special right, advantage, or
immunity granted or available only to a particular person or
group.

I Isolation In Dictionary: The process or fact of isolating or
being isolated.

I In Company: CEO is able to view all the classified docs, but
coders can not.

Nailgun: Breaking the Privilege Isolation on ARM 15



Privilege Isolation

What is Privilege Isolation?

I Privilege In Dictionary: A special right, advantage, or
immunity granted or available only to a particular person or
group.

I Isolation In Dictionary: The process or fact of isolating or
being isolated.

I In Company: CEO is able to view all the classified docs, but
coders can not.

Nailgun: Breaking the Privilege Isolation on ARM 16



Privilege Isolation

Exception Levels in ARM:

I Exception: is used to divert the normal execution control
flow, to allow the processor to handle internal or external
events.

I Exception Levels: are used to specify di↵erent privileges in
ARM processor.

Nailgun: Breaking the Privilege Isolation on ARM 17



Privilege Isolation

Normal Mode

Normal EL0 User-level apps

Normal EL1 OS kernel

Normal EL2 Hypervisors

Secure Mode

Secure EL0

Secure EL1

Secure EL3Gatekeeper

Nailgun: Breaking the Privilege Isolation on ARM 18



Privilege Isolation

Normal Mode

Normal EL0 User-level apps

Normal EL1 OS kernel

Normal EL2 Hypervisors

Secure Mode

Secure EL0

Secure EL1

Secure EL3Gatekeeper

Nailgun: Breaking the Privilege Isolation on ARM 19



Privilege Isolation

Normal Mode

Normal EL0 User-level apps

Normal EL1 OS kernel

Normal EL2 Hypervisors

Secure Mode

Secure EL0

Secure EL1

Secure EL3Gatekeeper

Nailgun: Breaking the Privilege Isolation on ARM 20



Privilege Isolation

Normal Mode

Normal EL0 User-level apps

Normal EL1 OS kernel

Normal EL2 Hypervisors

Secure Mode

Secure EL0

Secure EL1

Secure EL3Gatekeeper

Nailgun: Breaking the Privilege Isolation on ARM 21



Privilege Isolation

Normal Mode

Normal EL0 User-level apps

Normal EL1 OS kernel

Normal EL2 Hypervisors

Secure Mode

Secure EL0

Secure EL1

Secure EL3Gatekeeper

Nailgun: Breaking the Privilege Isolation on ARM 22



Privilege Isolation

Normal Mode

Normal EL0 User-level apps

Normal EL1 OS kernel

Normal EL2 Hypervisors

Secure Mode

Secure EL0

Secure EL1

Secure EL3Gatekeeper

Nailgun: Breaking the Privilege Isolation on ARM 23



Privilege Isolation

Normal Mode

Normal EL0 User-level apps

Normal EL1 OS kernel

Normal EL2 Hypervisors

Secure Mode

Secure EL0

Secure EL1

Secure EL3Gatekeeper

Nailgun: Breaking the Privilege Isolation on ARM 24



Background

Breaking the Privilege Isolation on ARM

Nailgun: Breaking the Privilege Isolation on ARM 25



Background

Breaking the Privilege Isolation on ARM

Figure source: https://www.123rf.com/

Nailgun: Breaking the Privilege Isolation on ARM 26



Outline

I Background

I Introduction

I Obstacles for Misusing the Traditional Debugging

I Nailgun Attack

I Mitigations

I Conclusion

Nailgun: Breaking the Privilege Isolation on ARM 27



Introduction

Modern processors are equipped with hardware-based debugging
features to facilitate on-chip debugging process.

- E.g., hardware breakpoints and hardware-based trace.

- It normally requires cable connection (e.g., JTAG [1]) to make
use of these features.

Nailgun: Breaking the Privilege Isolation on ARM 28



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Security?

Nailgun: Breaking the Privilege Isolation on ARM 29



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Security?

Nailgun: Breaking the Privilege Isolation on ARM 30



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Security?

Nailgun: Breaking the Privilege Isolation on ARM 31



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Security?

Nailgun: Breaking the Privilege Isolation on ARM 32



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Security?

Nailgun: Breaking the Privilege Isolation on ARM 33



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Security?

Nailgun: Breaking the Privilege Isolation on ARM 34



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Security?

Nailgun: Breaking the Privilege Isolation on ARM 35



Introduction

Security? We have obstacles for attackers!

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication mechanism.

Do these obstacles work?

Nailgun: Breaking the Privilege Isolation on ARM 36



Introduction

Security? We have obstacles for attackers!

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication mechanism.

Do these obstacles work?

Nailgun: Breaking the Privilege Isolation on ARM 37



Outline

I Background

I Introduction

I Obstacles for Misusing the Traditional Debugging

I Nailgun Attack

I Mitigations

I Conclusion

Nailgun: Breaking the Privilege Isolation on ARM 38



Obstacles for Misusing the Traditional Debugging

Obstacles for attackers:

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication mechanism.

Does it really require physical access?

Nailgun: Breaking the Privilege Isolation on ARM 39



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Nailgun: Breaking the Privilege Isolation on ARM 40



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Nailgun: Breaking the Privilege Isolation on ARM 41



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Nailgun: Breaking the Privilege Isolation on ARM 42



Traditional Debugging

Use one to debug another one?

Nailgun: Breaking the Privilege Isolation on ARM 43



Inter-Processor Debugging

We can use one processor on the chip to debug another one on the
same chip, and we refer it as inter-processor debugging.

I Memory-mapped debugging registers.
- Introduced since ARMv7.

I No JTAG, No physical access.

Nailgun: Breaking the Privilege Isolation on ARM 44



Inter-Processor Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

Memory-mapped
Interface

Nailgun: Breaking the Privilege Isolation on ARM 45



Obstacles for Misusing the Traditional Debugging

Obstacles for attackers:

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication mechanism.

Does debug authentication work as expected?

Nailgun: Breaking the Privilege Isolation on ARM 46



Processor in Normal State

TARGET is executing instructions pointed by pc

Nailgun: Breaking the Privilege Isolation on ARM 47



Processor in Non-invasive Debugging

Non-invasive Debugging: Monitoring without control

Nailgun: Breaking the Privilege Isolation on ARM 48



Processor in Invasive Debugging

Invasive Debugging: Control and change status

Nailgun: Breaking the Privilege Isolation on ARM 49



ARM Debug Authentication Mechanism

Debug Authentication Signal: Whether debugging is allowed

Nailgun: Breaking the Privilege Isolation on ARM 50



ARM Debug Authentication Mechanism

Four signals for: Secure/Non-secure, Invasive/Non-invasive

Nailgun: Breaking the Privilege Isolation on ARM 51



ARM Ecosystem

ARM SoC Vendor OEM User

Nailgun: Breaking the Privilege Isolation on ARM 52



ARM Ecosystem

ARM SoC Vendor OEM User

I ARM licenses technology to the System-On-Chip (SoC)
Vendors.

- E.g., ARM architectures and Cortex processors

I Defines the debug authentication signals.

Nailgun: Breaking the Privilege Isolation on ARM 53



ARM Ecosystem

ARM SoC Vendor OEM User

I The SoC Vendors develop chips for Original Equipment
Manufacturers (OEMs).

- E.g., Qualcomm Snapdragon SoCs

I Implement the debug authentication signals.

Nailgun: Breaking the Privilege Isolation on ARM 54



ARM Ecosystem

ARM SoC Vendor OEM User

I The OEMs produce devices for the users.
- E.g., Samsung Galaxy Series and Huawei Mate Series

I Configure the debug authentication signals.

Nailgun: Breaking the Privilege Isolation on ARM 55



ARM Ecosystem

ARM SoC Vendor OEM User

I Finally, the User can enjoy the released devices.
- Tablets, smartphones, and other devices

I Learn the status of debug authentication signals.

Nailgun: Breaking the Privilege Isolation on ARM 56



Obstacles for Misusing the Traditional Debugging

Obstacles for attackers:

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication mechanism.

Does debug authentication work as expected?

Nailgun: Breaking the Privilege Isolation on ARM 57



Debug Authentication Signals

I What is the status of the signals in real-world device?

I How to manage the signals in real-world device?

Nailgun: Breaking the Privilege Isolation on ARM 58



Debug Authentication Signals

Table: Debug Authentication Signals on Real Devices.

Category Platform / Device
Debug Authentication Signals

DBGEN NIDEN SPIDEN SPNIDEN

Development
Boards

ARM Juno r1 Board 4 4 4 4

NXP i.MX53 QSB 6 4 6 6

IoT Devices Raspberry PI 3 B+ 4 4 4 4

Cloud
Platforms

64-bit ARM miniNode 4 4 4 4

Packet Type 2A Server 4 4 4 4

Scaleway ARM C1 Server 4 4 4 4

Google Nexus 6 6 4 6 6

Samsung Galaxy Note 2 4 4 6 6
Mobile
Devices Huawei Mate 7 4 4 4 4

Motorola E4 Plus 4 4 4 4

Xiaomi Redmi 6 4 4 4 4

Nailgun: Breaking the Privilege Isolation on ARM 59



Debug Authentication Signals

Table: Debug Authentication Signals on Real Devices.

Category Platform / Device
Debug Authentication Signals

DBGEN NIDEN SPIDEN SPNIDEN

Development
Boards

ARM Juno r1 Board 4 4 4 4

NXP i.MX53 QSB 6 4 6 6

IoT Devices Raspberry PI 3 B+ 4 4 4 4

Cloud
Platforms

64-bit ARM miniNode 4 4 4 4

Packet Type 2A Server 4 4 4 4

Scaleway ARM C1 Server 4 4 4 4

Google Nexus 6 6 4 6 6

Samsung Galaxy Note 2 4 4 6 6
Mobile
Devices Huawei Mate 7 4 4 4 4

Motorola E4 Plus 4 4 4 4

Xiaomi Redmi 6 4 4 4 4

Nailgun: Breaking the Privilege Isolation on ARM 60



Debug Authentication Signals

Table: Debug Authentication Signals on Real Devices.

Category Platform / Device
Debug Authentication Signals

DBGEN NIDEN SPIDEN SPNIDEN

Development
Boards

ARM Juno r1 Board 4 4 4 4

NXP i.MX53 QSB 6 4 6 6

IoT Devices Raspberry PI 3 B+ 4 4 4 4

Cloud
Platforms

64-bit ARM miniNode 4 4 4 4

Packet Type 2A Server 4 4 4 4

Scaleway ARM C1 Server 4 4 4 4

Google Nexus 6 6 4 6 6

Samsung Galaxy Note 2 4 4 6 6
Mobile
Devices Huawei Mate 7 4 4 4 4

Motorola E4 Plus 4 4 4 4

Xiaomi Redmi 6 4 4 4 4

Nailgun: Breaking the Privilege Isolation on ARM 61



Debug Authentication Signals

How to manage the signals in real-world device?

I For both development boards with manual, we cannot fully
control the debug authentication signals.

- Signals in i.MX53 QSB can be enabled by JTAG.

- The DBGEN and NIDEN in ARM Juno board cannot be
disabled.

I In some mobile phones, we find that the signals are controlled
by One-Time Programmable (OTP) fuse.

For all the other devices, nothing is publicly

available.

Nailgun: Breaking the Privilege Isolation on ARM 62



Obstacles for Misusing the Traditional Debugging

Obstacles for attackers:

I Obstacle 1: Physical access.
We don’t need physical access to debug a processor.

I Obstacle 2: Debug authentication mechanism.
The debug authentication mechanism allows us to debug the
processor.

Nailgun: Breaking the Privilege Isolation on ARM 63



Outline

I Background

I Introduction

I Obstacles for Misusing the Traditional Debugging

I Nailgun Attack

I Mitigations

I Conclusion

Nailgun: Breaking the Privilege Isolation on ARM 64



Inter-processor Debugging

Debug Target
(TARGET)

Debug Host
(HOST)

Memory-mapped
Interface

Nailgun: Breaking the Privilege Isolation on ARM 65



Inter-processor Debugging

Debug Target
(TARGET)

Debug Host
(HOST)

Memory-mapped
Interface

Nailgun: Breaking the Privilege Isolation on ARM 66



Nailgun Attack

A Multi-processor SoC System

TARGET
(Normal State)

(High Privilege)

HOST
(Normal State)

(High Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

An example SoC system:

I Two processors as HOST and TARGET, respectively.

I Low-privilege and High-privilege resource.

Nailgun: Breaking the Privilege Isolation on ARM 67



Nailgun Attack

A Multi-processor SoC System

TARGET
(Normal State)

(High Privilege)

HOST
(Normal State)

(High Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

I Low-privilege refers to non-secure kernel-level privilege

I High-privilege refers to any other higher privilege

Nailgun: Breaking the Privilege Isolation on ARM 68



Nailgun Attack

A Multi-processor SoC System

TARGET
(Normal State)
(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Request

Both processors are only access low-privilege resource.

I Normal state

I Low-privilege mode

Nailgun: Breaking the Privilege Isolation on ARM 69



Nailgun Attack

A Multi-processor SoC System

TARGET
(Normal State)
(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Request

HOST sends a Debug Request to TARGET,

I TARGET checks its authentication signal.

I Privilege of HOST is ignored.

Nailgun: Breaking the Privilege Isolation on ARM 70



Nailgun Attack

A Multi-processor SoC System

TARGET
(Normal State)
(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Request

HOST sends a Debug Request to TARGET,

I TARGET checks its authentication signal.

I Privilege of HOST is ignored.

Nailgun: Breaking the Privilege Isolation on ARM 71



Nailgun Attack

A Multi-processor SoC System

TARGET
(Normal State)
(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Request

Implication: A low-privilege processor can make an arbitrary proces-
sor (even a high-privilege processor) enter the debug state.

Nailgun: Breaking the Privilege Isolation on ARM 72



Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Request

TARGET turns to Debug State according to the request.

I Low-privilege mode

I No access to high-privilege resource

Nailgun: Breaking the Privilege Isolation on ARM 73



Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

HOST sends a Privilege Escalation Request to TARGET,

I E.g., executing DCPS series instructions.

I The instructions can be executed at any privilege level.

Nailgun: Breaking the Privilege Isolation on ARM 74



Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

Implication: The privilege escalation instructions enable a processor
running in the debug state to gain a high privilege without restric-
tion.

Nailgun: Breaking the Privilege Isolation on ARM 75



Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

TARGET turns to High-privilege Mode according to the request.

I Debug state, high-privilege mode

I Gained access to high-privilege resource

Nailgun: Breaking the Privilege Isolation on ARM 76



Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Resource
Access
Request

HOST sends a Resource Access Request to TARGET,

I E.g., accessing secure RAM/register/peripheral.

I Privilege of HOST is ignored.

Nailgun: Breaking the Privilege Isolation on ARM 77



Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Resource
Access
Request

Implication: The instruction execution and resource access in
TARGET does not take the privilege of HOST into account.

Nailgun: Breaking the Privilege Isolation on ARM 78



Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Response

TARGET return the result to HOST,

I i.e., content of the high-privilege resource.

I Privilege of HOST is ignored.

Nailgun: Breaking the Privilege Isolation on ARM 79



Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Response

HOST gains access to the high-privilege resource while running in,

I Normal state

I Low-privilege mode

Nailgun: Breaking the Privilege Isolation on ARM 80



Nailgun Attack

Nailgun: Break the privilege isolation of ARM platform.

I Achieve access to high-privilege resource via misusing the
ARM debugging features.

I Can be used to craft di↵erent attacks.

Nailgun: Breaking the Privilege Isolation on ARM 81



Attack Scenarios

I Implemented Attack Scenarios:
- Inferring AES keys from TrustZone.

- Read Secure Configuration Register (SCR).

- Arbitrary payload execution in TrustZone.

I Covered Architectures:
- ARMv7, 32-bit ARMv8, and 64-bit ARMv8 architecture.

I Vulnerable Devices:
- Development boards, IoT devices, cloud platforms, mobile
devices.

Nailgun: Breaking the Privilege Isolation on ARM 82



Attack Scenarios

I Implemented Attack Scenarios:
- Inferring AES keys from TrustZone.

- Read Secure Configuration Register (SCR).

- Arbitrary payload execution in TrustZone.

I Covered Architectures:
- ARMv7, 32-bit ARMv8, and 64-bit ARMv8 architecture.

I Vulnerable Devices:
- Development boards, IoT devices, cloud platforms, mobile
devices.

Nailgun: Breaking the Privilege Isolation on ARM 83



Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

mov X0, #1

...

...

...

eret

b handler

...

DLR EL0

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I DLR EL0 points to the debug return address.

I VBAR EL3 points to the exception vector in EL3.

Nailgun: Breaking the Privilege Isolation on ARM 84



Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

mov X0, #1

...

...

...

...

b handler

...

payload:

DLR EL0

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I With Nailgun, we can directly copy the payload to the secure
memory.

Nailgun: Breaking the Privilege Isolation on ARM 85



Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

smc #0

...

...

...

...

b handler

...

payload:

DLR EL0

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I Modify the instruction pointed by DLR EL0 to get into
TrustZone.

Nailgun: Breaking the Privilege Isolation on ARM 86



Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

smc #0

...

...

...

...

b payload

...

payload:

DLR EL0

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I Manipulate the exception vector to execute the payload while
the SMC exception is routed to EL3.

Nailgun: Breaking the Privilege Isolation on ARM 87



Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

smc #0

...

...

...

eret

b payload

...

payload:

DLR EL0

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I The last instruction of the payload should be eret.

Nailgun: Breaking the Privilege Isolation on ARM 88



Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

smc #0

...

...

...

eret

b payload

...

payload:

PC

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I Make TARGET exit the debug state.

Nailgun: Breaking the Privilege Isolation on ARM 89



Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

smc #0

...

...

...

eret

b payload

...

payload:

ELR EL3

PC
VBAR EL3

+ 0x400

I ELR EL3 points to the exception return address.

Nailgun: Breaking the Privilege Isolation on ARM 90



Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

smc #0

...

...

...

eret

b payload

...

payload:

PC

ELR EL3

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I The payload get executed.

Nailgun: Breaking the Privilege Isolation on ARM 91



Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

smc #0

...

...

...

eret

b handler

...

payload:

PC

ELR EL3

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I In the payload, we first restore the exception vector.

Nailgun: Breaking the Privilege Isolation on ARM 92



Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

mov X0, #1

...

...

...

eret

b handler

...

payload:

PCELR EL3

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I Roll back the ELR EL3 register.

I Revert the modified instruction.

Nailgun: Breaking the Privilege Isolation on ARM 93



Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

mov X0, #1

...

...

...

eret

b handler

...

payload:

PC

ELR EL3

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I The eret instruction will finish the exception handle process.

Nailgun: Breaking the Privilege Isolation on ARM 94



Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

mov X0, #1

...

...

...

eret

b handler

...

payload:

PC

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I After that, everything goes back to the original state.

Nailgun: Breaking the Privilege Isolation on ARM 95



Nailgun Attack

Fingerprint extraction in commercial mobile phone.

I Deivce: Huawei Mate 7 (MT-L09)

I Firmware: MT7-L09V100R001C00B121SP05

I Fingerprint sensor: FPC1020

We choose this phone because the manual and driver of the
fingerprint sensor is publicly available. Similar attack can be
demonstrated on other devices with enabled debug authentication
signals.

Nailgun: Breaking the Privilege Isolation on ARM 96



Nailgun Attack

I Step 1: Learn the location of fingerprint data in secure RAM.
- Achieved by reverse engineering.

I Step 2: Extract the data.
- With the inter-processor debugging in Nailgun.

I Step 3: Restore fingerprint image from the extracted data.
- Read the publicly available sensor manual.

Nailgun: Breaking the Privilege Isolation on ARM 97



Nailgun Attack

I The right part of the image is blurred for privacy concerns.

I Source code: https://compass.cs.wayne.edu/nailgun/

I The issue has been fixed in Huawei devices.

Nailgun: Breaking the Privilege Isolation on ARM 98

https://compass.cs.wayne.edu/nailgun/


Nailgun Attack

Nailgun: Breaking the Privilege Isolation on ARM 99



Disclosure

March 2018 Preliminary findings are reported to ARM

August 2018 Report to ARM and related OEMs with enriched result

October 2018 Issue is reported to MITRE

February 2019 PoCs and demos are released

April 2019 CVE-2018-18068 is released

Nailgun: Breaking the Privilege Isolation on ARM 100



Outline

I Background

I Introduction

I Obstacles for Misusing the Traditional Debugging

I Nailgun Attack

I Mitigations

I Conclusion

Nailgun: Breaking the Privilege Isolation on ARM 101



Mitigations

Simply disable the signals?

Nailgun: Breaking the Privilege Isolation on ARM 102



Mitigations

Simply disable the authentication signals?

I Existing tools rely on the debug authentication signals.
- E.g., [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

I Unavailable management mechanisms.

I OTP feature, cost, and maintenance.

Nailgun: Breaking the Privilege Isolation on ARM 103



Mitigations

We suggest a comprehensive defense across di↵erent roles in the
ARM ecosystem.

I For ARM, additional restriction in inter-processor debugging
model.

I For SoC vendors, refined signal management and
hardware-assisted access control to debug components.

I For OEMs and cloud providers, software-based access control.

Nailgun: Breaking the Privilege Isolation on ARM 104



Outline

I Background

I Introduction

I Obstacles for Misusing the Traditional Debugging

I Nailgun Attack

I Mitigations

I Conclusion

Nailgun: Breaking the Privilege Isolation on ARM 105



Conclusion

I We present a study on the security of hardware debugging
features on ARM platform.

I “Safe” components in legacy systems may be vulnerable in
advanced systems.

I We suggest a comprehensive rethink on the security of legacy
mechanisms.

Nailgun: Breaking the Privilege Isolation on ARM 106



References I

[1] IEEE, “Standard for test access port and boundary-scan architecture,”
https://standards.ieee.org/findstds/standard/1149.1-2013.html.

[2] D. Balzarotti, G. Banks, M. Cova, V. Felmetsger, R. Kemmerer, W. Robertson, F. Valeur, and G. Vigna, “An
experience in testing the security of real-world electronic voting systems,” IEEE Transactions on Software
Engineering, 2010.

[3] S. Clark, T. Goodspeed, P. Metzger, Z. Wasserman, K. Xu, and M. Blaze, “Why (special agent) johnny
(still) can’t encrypt: A security analysis of the APCO project 25 two-way radio system,” in Proceedings of
the 20th USENIX Security Symposium (USENIX Security’11), 2011.

[4] L. Cojocar, K. Razavi, and H. Bos, “O↵-the-shelf embedded devices as platforms for security research,” in
Proceedings of the 10th European Workshop on Systems Security (EuroSec’17), 2017.

[5] N. Corteggiani, G. Camurati, and A. Francillon, “Inception: System-wide security testing of real-world
embedded systems software,” in Proceedings of the 27th USENIX Security Symposium (USENIX
Security’18), 2018.

[6] L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. A. Mohammed, and S. A. Zonouz, “Hey, my
malware knows physics! Attacking PLCs with physical model aware rootkit,” in Proceedings of 24th Network
and Distributed System Security Symposium (NDSS’17), 2017.

[7] K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling near-real-time dynamic analyses of
embedded systems,” in Proceedings of the 9th USENIX Workshop on O↵ensive Technologies (WOOT’15),
2015.

[8] Y. Lee, I. Heo, D. Hwang, K. Kim, and Y. Paek, “Towards a practical solution to detect code reuse attacks
on ARM mobile devices,” in Proceedings of the 4th Workshop on Hardware and Architectural Support for
Security and Privacy (HASP’15), 2015.

[9] S. Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy, “A security analysis of an in-vehicle infotainment and
app platform,” in Proceedings of the 10th USENIX Workshop on O↵ensive Technologies (WOOT’16), 2016.

Nailgun: Breaking the Privilege Isolation on ARM 107

https://standards.ieee.org/findstds/standard/1149.1-2013.html


References II

[10] Z. Ning and F. Zhang, “Ninja: Towards transparent tracing and debugging on ARM,” in Proceedings of the
26th USENIX Security Symposium (USENIX Security’17), 2017.

[11] J. Zaddach, L. Bruno, A. Francillon, D. Balzarotti et al., “AVATAR: A framework to support dynamic security
analysis of embedded systems’ firmwares,” in Proceedings of 21st Network and Distributed System Security
Symposium (NDSS’14), 2014.

Nailgun: Breaking the Privilege Isolation on ARM 108



Thank you!

Questions?
zhenyu.ning@wayne.edu

http://compass.cs.wayne.edu

Nailgun: Breaking the Privilege Isolation on ARM 109

http://compass.cs.wayne.edu


Backup Slides

Backup Slides

Nailgun: Breaking the Privilege Isolation on ARM 110



Nailgun in di↵erent ARM architecture

I 64-bit ARMv8 architecture: ARM Juno r1 board.
- Embedded Cross Trigger (ECT) for debug request.
- Binary instruction to Instruction Transfer Register (ITR).

I 32-bit ARMv8 architecture: Raspberry PI Model 3 B+.
- Embedded Cross Trigger (ECT) for debug request.
- First and last half of binary instruction should be reversed in
ITR.

I ARMv7 architecture: Huawei Mate 7.
- Use Debug Run Control Register for debug request.
- Binary instruction to Instruction Transfer Register (ITR).

Nailgun: Breaking the Privilege Isolation on ARM 111



Instruction Execution in Debug State

In normal state, TARGET is executing instructions pointed by pc

Nailgun: Breaking the Privilege Isolation on ARM 112



Instruction Execution in Debug State

In debug state, TARGET stops executing the instruction at pc

Nailgun: Breaking the Privilege Isolation on ARM 113



Instruction Execution in Debug State

In debug state, write binary instruction to ITR for execution

Nailgun: Breaking the Privilege Isolation on ARM 114



Instruction Execution in Debug State

In debug state, write binary instruction to ITR for execution

Nailgun: Breaking the Privilege Isolation on ARM 115



Instruction Execution in Debug State

In debug state, write binary instruction to ITR for execution

Nailgun: Breaking the Privilege Isolation on ARM 116


	Background
	Introduction
	Obstacles for Misusing the Traditional Debugging
	Nailgun Attack
	Mitigations
	Conclusion
	Reference
	Thanks
	Backup Slides

	anm0: 
	anm1: 
	anm2: 
	anm3: 
	anm4: 
	fd@rm@0: 
	anm5: 
	anm6: 
	anm7: 
	anm8: 
	anm9: 


