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ARM

What is ARM?

I In Dictionary: Hands, or weapons.

I Company: ARM was a British semiconductor company, now
owned by SoftBank.

I Architecture: ARM is a processor architecture designed by
ARM company.
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Privilege Isolation

What is Privilege Isolation?

I Privilege In Dictionary: A special right, advantage, or
immunity granted or available only to a particular person or
group.

I Isolation In Dictionary: The process or fact of isolating or
being isolated.

I In Company: CEO is able to view all the classified docs, but
coders can not.
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Privilege Isolation

Exception Levels in ARM:

I Exception: is used to divert the normal execution control
flow, to allow the processor to handle internal or external
events.

I Exception Levels: are used to specify di↵erent privileges in
ARM processor.
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Privilege Isolation

Normal Mode

Normal EL0 User-level apps

Normal EL1 OS kernel

Normal EL2 Hypervisors

Secure Mode

Secure EL0

Secure EL1

Secure EL3Gatekeeper
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Background

Breaking the Privilege Isolation on ARM

Figure source: https://www.123rf.com/
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Introduction

Modern processors are equipped with hardware-based debugging
features to facilitate on-chip debugging process.

- E.g., hardware breakpoints and hardware-based trace.

- It normally requires cable connection (e.g., JTAG [1]) to make
use of these features.
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Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Security?
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Introduction

Security? We have obstacles for attackers!

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication mechanism.

Do these obstacles work?
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Obstacles for Misusing the Traditional Debugging

Obstacles for attackers:

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication mechanism.

Does it really require physical access?
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Traditional Debugging

Use one to debug another one?
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Inter-Processor Debugging

We can use one processor on the chip to debug another one on the
same chip, and we refer it as inter-processor debugging.

I Memory-mapped debugging registers.
- Introduced since ARMv7.

I No JTAG, No physical access.
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Inter-Processor Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

Memory-mapped
Interface
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Obstacles for Misusing the Traditional Debugging

Obstacles for attackers:

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication mechanism.

Does debug authentication work as expected?
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Processor in Normal State

TARGET is executing instructions pointed by pc
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Processor in Non-invasive Debugging

Non-invasive Debugging: Monitoring without control
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Processor in Invasive Debugging

Invasive Debugging: Control and change status
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ARM Debug Authentication Mechanism

Debug Authentication Signal: Whether debugging is allowed
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ARM Debug Authentication Mechanism

Four signals for: Secure/Non-secure, Invasive/Non-invasive
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ARM Ecosystem

ARM SoC Vendor OEM User
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ARM Ecosystem

ARM SoC Vendor OEM User

I ARM licenses technology to the System-On-Chip (SoC)
Vendors.

- E.g., ARM architectures and Cortex processors

I Defines the debug authentication signals.
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ARM Ecosystem

ARM SoC Vendor OEM User

I The SoC Vendors develop chips for Original Equipment
Manufacturers (OEMs).

- E.g., Qualcomm Snapdragon SoCs

I Implement the debug authentication signals.
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ARM Ecosystem

ARM SoC Vendor OEM User

I The OEMs produce devices for the users.
- E.g., Samsung Galaxy Series and Huawei Mate Series

I Configure the debug authentication signals.
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ARM Ecosystem

ARM SoC Vendor OEM User

I Finally, the User can enjoy the released devices.
- Tablets, smartphones, and other devices

I Learn the status of debug authentication signals.
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Obstacles for Misusing the Traditional Debugging

Obstacles for attackers:

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication mechanism.

Does debug authentication work as expected?
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Debug Authentication Signals

I What is the status of the signals in real-world device?

I How to manage the signals in real-world device?
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Debug Authentication Signals

Table: Debug Authentication Signals on Real Devices.

Category Platform / Device
Debug Authentication Signals

DBGEN NIDEN SPIDEN SPNIDEN

Development
Boards

ARM Juno r1 Board 4 4 4 4

NXP i.MX53 QSB 6 4 6 6

IoT Devices Raspberry PI 3 B+ 4 4 4 4

Cloud
Platforms

64-bit ARM miniNode 4 4 4 4

Packet Type 2A Server 4 4 4 4

Scaleway ARM C1 Server 4 4 4 4

Google Nexus 6 6 4 6 6

Samsung Galaxy Note 2 4 4 6 6
Mobile
Devices Huawei Mate 7 4 4 4 4

Motorola E4 Plus 4 4 4 4

Xiaomi Redmi 6 4 4 4 4
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Debug Authentication Signals

How to manage the signals in real-world device?

I For both development boards with manual, we cannot fully
control the debug authentication signals.

- Signals in i.MX53 QSB can be enabled by JTAG.

- The DBGEN and NIDEN in ARM Juno board cannot be
disabled.

I In some mobile phones, we find that the signals are controlled
by One-Time Programmable (OTP) fuse.

For all the other devices, nothing is publicly

available.
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Obstacles for Misusing the Traditional Debugging

Obstacles for attackers:

I Obstacle 1: Physical access.
We don’t need physical access to debug a processor.

I Obstacle 2: Debug authentication mechanism.
The debug authentication mechanism allows us to debug the
processor.
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Nailgun Attack

A Multi-processor SoC System

TARGET
(Normal State)

(High Privilege)

HOST
(Normal State)

(High Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

An example SoC system:

I Two processors as HOST and TARGET, respectively.

I Low-privilege and High-privilege resource.
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Nailgun Attack

A Multi-processor SoC System

TARGET
(Normal State)

(High Privilege)

HOST
(Normal State)

(High Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

I Low-privilege refers to non-secure kernel-level privilege

I High-privilege refers to any other higher privilege
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Nailgun Attack

A Multi-processor SoC System

TARGET
(Normal State)
(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Request

Both processors are only access low-privilege resource.

I Normal state

I Low-privilege mode

Nailgun: Breaking the Privilege Isolation on ARM 69



Nailgun Attack
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HOST sends a Debug Request to TARGET,

I TARGET checks its authentication signal.

I Privilege of HOST is ignored.
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Nailgun Attack

A Multi-processor SoC System

TARGET
(Normal State)
(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Request

Implication: A low-privilege processor can make an arbitrary proces-
sor (even a high-privilege processor) enter the debug state.
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Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Request

TARGET turns to Debug State according to the request.

I Low-privilege mode

I No access to high-privilege resource
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Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

HOST sends a Privilege Escalation Request to TARGET,

I E.g., executing DCPS series instructions.

I The instructions can be executed at any privilege level.
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Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

Implication: The privilege escalation instructions enable a processor
running in the debug state to gain a high privilege without restric-
tion.
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Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

TARGET turns to High-privilege Mode according to the request.

I Debug state, high-privilege mode

I Gained access to high-privilege resource
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Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Resource
Access
Request

HOST sends a Resource Access Request to TARGET,

I E.g., accessing secure RAM/register/peripheral.

I Privilege of HOST is ignored.
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Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Resource
Access
Request

Implication: The instruction execution and resource access in
TARGET does not take the privilege of HOST into account.
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Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Response

TARGET return the result to HOST,

I i.e., content of the high-privilege resource.

I Privilege of HOST is ignored.
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Nailgun Attack

A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Response

HOST gains access to the high-privilege resource while running in,

I Normal state

I Low-privilege mode
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Nailgun Attack

Nailgun: Break the privilege isolation of ARM platform.

I Achieve access to high-privilege resource via misusing the
ARM debugging features.

I Can be used to craft di↵erent attacks.
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Attack Scenarios

I Implemented Attack Scenarios:
- Inferring AES keys from TrustZone.

- Read Secure Configuration Register (SCR).

- Arbitrary payload execution in TrustZone.

I Covered Architectures:
- ARMv7, 32-bit ARMv8, and 64-bit ARMv8 architecture.

I Vulnerable Devices:
- Development boards, IoT devices, cloud platforms, mobile
devices.
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Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

mov X0, #1

...

...

...

eret

b handler

...

DLR EL0

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I DLR EL0 points to the debug return address.

I VBAR EL3 points to the exception vector in EL3.
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Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

mov X0, #1

...

...

...

...

b handler

...

payload:

DLR EL0

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I With Nailgun, we can directly copy the payload to the secure
memory.
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Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

smc #0

...

...

...

...

b handler

...

payload:

DLR EL0

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I Modify the instruction pointed by DLR EL0 to get into
TrustZone.
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Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

smc #0

...

...

...

...

b payload

...

payload:

DLR EL0

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I Manipulate the exception vector to execute the payload while
the SMC exception is routed to EL3.
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Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

smc #0

...

...

...

eret

b payload

...

payload:

DLR EL0

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I The last instruction of the payload should be eret.
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Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

smc #0

...

...

...

eret

b payload

...

payload:

PC

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I Make TARGET exit the debug state.
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Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

smc #0

...

...

...

eret

b payload

...

payload:

ELR EL3

PC
VBAR EL3

+ 0x400

I ELR EL3 points to the exception return address.
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Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

smc #0

...

...

...

eret

b payload

...

payload:

PC

ELR EL3

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I The payload get executed.
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Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

smc #0

...

...

...

eret

b handler

...

payload:

PC

ELR EL3

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I In the payload, we first restore the exception vector.

Nailgun: Breaking the Privilege Isolation on ARM 92



Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

mov X0, #1

...

...

...

eret

b handler

...

payload:

PCELR EL3

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I Roll back the ELR EL3 register.

I Revert the modified instruction.
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Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

mov X0, #1

...

...

...

eret

b handler

...

payload:

PC

ELR EL3

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I The eret instruction will finish the exception handle process.
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Arbitrary Code Execution in TrustZone

Non-secure Memory Secure Memory

mov X0, #1

...

...

...

eret

b handler

...

payload:

PC

VBAR EL3
+ 0x400

VBAR EL3
+ 0x400

I After that, everything goes back to the original state.
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Nailgun Attack

Fingerprint extraction in commercial mobile phone.

I Deivce: Huawei Mate 7 (MT-L09)

I Firmware: MT7-L09V100R001C00B121SP05

I Fingerprint sensor: FPC1020

We choose this phone because the manual and driver of the
fingerprint sensor is publicly available. Similar attack can be
demonstrated on other devices with enabled debug authentication
signals.
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Nailgun Attack

I Step 1: Learn the location of fingerprint data in secure RAM.
- Achieved by reverse engineering.

I Step 2: Extract the data.
- With the inter-processor debugging in Nailgun.

I Step 3: Restore fingerprint image from the extracted data.
- Read the publicly available sensor manual.
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Nailgun Attack

I The right part of the image is blurred for privacy concerns.

I Source code: https://compass.cs.wayne.edu/nailgun/

I The issue has been fixed in Huawei devices.
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Nailgun Attack
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Disclosure

March 2018 Preliminary findings are reported to ARM

August 2018 Report to ARM and related OEMs with enriched result

October 2018 Issue is reported to MITRE

February 2019 PoCs and demos are released

April 2019 CVE-2018-18068 is released
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Mitigations

Simply disable the signals?
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Mitigations

Simply disable the authentication signals?

I Existing tools rely on the debug authentication signals.
- E.g., [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

I Unavailable management mechanisms.

I OTP feature, cost, and maintenance.
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Mitigations

We suggest a comprehensive defense across di↵erent roles in the
ARM ecosystem.

I For ARM, additional restriction in inter-processor debugging
model.

I For SoC vendors, refined signal management and
hardware-assisted access control to debug components.

I For OEMs and cloud providers, software-based access control.
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Conclusion

I We present a study on the security of hardware debugging
features on ARM platform.

I “Safe” components in legacy systems may be vulnerable in
advanced systems.

I We suggest a comprehensive rethink on the security of legacy
mechanisms.
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Thank you!

Questions?
zhenyu.ning@wayne.edu

http://compass.cs.wayne.edu
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Backup Slides

Backup Slides
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Nailgun in di↵erent ARM architecture

I 64-bit ARMv8 architecture: ARM Juno r1 board.
- Embedded Cross Trigger (ECT) for debug request.
- Binary instruction to Instruction Transfer Register (ITR).

I 32-bit ARMv8 architecture: Raspberry PI Model 3 B+.
- Embedded Cross Trigger (ECT) for debug request.
- First and last half of binary instruction should be reversed in
ITR.

I ARMv7 architecture: Huawei Mate 7.
- Use Debug Run Control Register for debug request.
- Binary instruction to Instruction Transfer Register (ITR).
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Instruction Execution in Debug State

In normal state, TARGET is executing instructions pointed by pc
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Instruction Execution in Debug State

In debug state, TARGET stops executing the instruction at pc
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Instruction Execution in Debug State

In debug state, write binary instruction to ITR for execution
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Instruction Execution in Debug State

In debug state, write binary instruction to ITR for execution
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Instruction Execution in Debug State

In debug state, write binary instruction to ITR for execution
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