
Dirty COW Attack
Instructor: Fengwei Zhang

1SUSTech CS 315 Computer Security



Outline

● Dirty COW vulnerability

● Memory Mapping using mmap()

● Map_shared, Map_Private

● Mapping Read-Only Files
● How to exploit?

2



Dirty COW vulnerability
● Interesting case of the race condition 

vulnerability.
● Existed in the Linux Kernel since September 

2007 , was discovered and attacked on October 
2016.

● Affects all Linux-based operating system, 
including Android.

Consequences :
● Modify protected files like /etc/passwd.
● Gain root privileges by exploiting the 

vulnerability.

3



Memory Mapping via mmap()

mmap() - system call to map files or devices into 
memory. Default mapping type is file-backed mapping, 
which maps an area of a process’s virtual memory to 
files;reading from the mapped area causes the file to be 
read

4

Line ① opens a file in 
RDWR mode.



5

Line ② calls mmap() to create a mapped memory

1st arg: Starting address for the mapped memory
2nd arg: Size of the mapped memory
3rd arg: If the memory is readable or writable. Should match the access type 
from Line ①
4th arg: If an update to the mapping is visible to other processes mapping the 
same region and if the update is carried through to the underlying file
5th arg: File that needs to be mapped
6th arg: Offset indicating from where inside the file the mapping should start.

Memory Mapping via mmap()



Access the file 
for simple 
reading and 
writing using 
memcpy().

6

Memory Mapping via mmap()



MAP_SHARED & MAP_PRIVATE

7

MAP_SHARED: The mapped 
memory behaves like a 
shared memory between the 
two processes.

When multiple processes map 
the same file to memory, they 
can map the file to different 
virtual memory addresses, 
but the physical address 
where the file content is held 
is same.



8

MAP_PRIVATE: The file 
is mapped to the memory 
private to the calling 
process.

● Changes made to 
memory will not be 
visible to other 
processes

● The contents in the original memory need to be copied to the private 
memory.

● If the process tries to write to the memory, OS allocates a new block of 
physical memory and copy the contents from the master copy to the 
new memory.

● Mapped virtual memory will now point to the new physical memory.

MAP_SHARED & MAP_PRIVATE



Copy On Write

● Technique that allows virtual memory in different 
processes to map to the same physical memory pages, 
if they have identical contents.

● When a child process is created using fork() system 
call :

○ OS lets the child process share the parent process’s memory 
by making page entries point to the same physical memory.

○ If the memory is only read, memory copy is not required.

○ If any one tries to write to the memory, an exception will be 
raised and OS will allocate new physical memory for the child 
process (dirty page), copy contents from the parent process, 
change each process’s (parent and child) page table so that it 
points to it’s own private copy.

9



Discard Copied Memory

10

madvise(): Give advices or directions to the kernel about the 
memory from addr to addr + length 

advice (3rd argument): MADV_DONOTNEED

● We tell the kernel that we do not need the claimed part of 
the address any more. The kernel will free the resource of 
the claimed address and the process’s page table will point 
back to the original physical memory. 



Mapping Read-Only Files: Create a File First

Experiment :
● Create a file zzz in the root directory. Set 

owner/group to root and make it readable to other 
users.

11

If we have a seed account :
● We can only open this file using read_only flag (O_RDONLY).
● If we map this file to the memory, we need to use PROT_READ option, so 

the memory is read-only.



Mapping Read-Only Files

● Normally, we cannot write to the read-only memory.
● However, if the file is mapped using 

MAP_PRIVATE, OS makes an exception and allow 
us write to the mapped memory, but we have to 
use a different route, instead of directly using 
memory operations, such as memcpy().

● The write() system call is such a route. 

12



Mapping Read-Only Files: the Code

13

Line ①: Map /zzz into read-only memory. We cannot directly write this to memory, 
but it can be done using the /proc file system.
Line ②: Using the /proc file system, a process can use read(),write() and lseek() to 
access data from its memory.
Line ③: The lseek() system call moves the file pointer to the 5th byte from the 
beginning of the mapped memory.



Line ④: The write() system call writes a string to the 
memory. It triggers copy on write (MAP_PRIVATE), i.e., 
writing is only possible on a private copy of the mapped 
memory. 

Line ⑤: Tell the kernel that private copy is no longer 
needed. The kernel will point our page table back to the 
original mapped memory. Hence, the changes made to 
the private file is discarded. 14

Mapping Read-Only Files: the Code



Mapping Read-Only Files: Result

15

Memory is modified as we can see the changed content. But 
the change is only in the copy of the mapped memory; it does 
not change the underlying file.



The Dirty-COW Vulnerability

● For Copy-On-Write, three important steps are 
performed:

A. Make a copy of the mapped memory
B. Update the page table, so the virtual memory points to 

newly created physical memory
C. Write to the memory.

● The above steps are not atomic in nature: they can 
be interrupted by other threads which creates a 
potential race condition leading to Dirty Cow 
vulnerability.

16



17

The Dirty-COW Vulnerability



● If madvise() is executed between Steps B and C :
○ Step B makes the virtual memory point to 2.
○ madvise() will change it back to 1 (negating Step B)
○ Step C will modify the physical memory marked by 1, 

instead of the private copy.
○ Changes in the memory marked by 1 will be carried 

through to the underlying file, causing a read-only file to 
be modified.

● When write() system call starts, it checks for the 
protection of the mapped memory. When it sees 
that is a COW memory, it triggers A,B,C without a 
double check. 

18

The Dirty-COW Vulnerability



Exploiting Dirty COW vulnerability

● Basic Idea : Need to run two threads
○ Thread 1: write to the mapped memory using write()
○ Thread 2: discard the private copy of the mapped 

memory 
● We need to race these threads against each other 

so that they can influence the output.

19



Exploiting Dirty COW vulnerability
Selecting /etc/passwd as Target File: The file is a 
read-only file, so non-root users cannot modify it.

20

The third field denotes the User-ID of the user (for Root, it is 0). If 
we can change the third field of our own record (user testcow) 
into 0, we can turn ourselves into root.

Change it to 0000 using the Dirty COW vulnerability



Attack: the Main Thread

21

Set Up Memory Mapping 
and Threads

● Open the /etc/passwd file 
in read-only mode

● Map the memory using 
MAP_PRIVATE

● Find the position in the 
target file.

● Create a thread for 
madvise()

● Create a thread for write()



Attack: the Two Threads

22

The write Thread: Replaces 
the string “testcow:x:1001” 
in the memory with 
“testcow:x:0000”

The madvise Thread:
Discards the private copy of 
the mapped memory so 
the page table points back 
to the original mapped 
memory.



Attack Result

23



Summary

● DirtyCOW is a special type of race condition 
problem

● It is related to memory mapping
● We learned how the vulnerability can be exploited
● The problem has already been fixed in Linux

24


