
Return-to-libc Attacks

Instructor: Fengwei Zhang

1SUSTech CS 315 Computer Security



Outline

● Non-executable Stack countermeasure

● How to defeat the countermeasure

● Tasks involved in the attack

● Function Prologue and Epilogue

● Launching attack

2



Non-executable Stack
Running shellcode in C program

3

Calls shellcode



Non-executable Stack

● With executable stack

● With non-executable stack

4



How to Defeat This Countermeasure

5

Jump to existing code: e.g. libc library.

Function: system(cmd): cmd argument is a command which 
gets executed.



Environment Setup

6

Buffer overflow 
problem

This code has potential 
buffer overflow problem 
in vul_func()



Environment Setup
“Non executable stack” countermeasure is switched 
on, StackGuard protection is switched off and 
address randomization is turned off.

Root owned Set-UID program.

7



Overview of the Attack
Task A : Find address of system(). 

● To overwrite return address with system()’s 
address.

Task B : Find address of the “/bin/sh” string.
● To run command “/bin/sh” from system()

Task C : Construct arguments for system()
● To find location in the stack to place “/bin/sh” 

address (argument for system())

8



Task A : To Find system()’s Address. 

● Debug the vulnerable program using gdb
● Using p (print) command, print address of 

system() and exit().

9



Task B : To Find “/bin/sh” String Address 

10

MYSHELL is passed to the vulnerable program as an 
environment variable, which is stored on the stack.

Export an environment variable called “MYSHELL” 
with value “/bin/sh”.

We can find its address.



11

Code to display address of 
environment variable

Export “MYSHELL” 
environment variable and 
execute the code.

Task B : To Find “/bin/sh” String Address 



Task B : Some Considerations

12

● Address of “MYSHELL” environment variable 
is sensitive to the length of the program 
name. 

● If the program name is changed from env55 
to env77, we get a different address.



Task C : Argument for system()

13

● Arguments are accessed with respect to ebp.
● Argument for system() needs to be on the stack.

Frame for the system() function

Need to know where exactly ebp is 
after we have “returned” to 
system(), so we can put the 
argument at ebp + 8.



Task C : Argument for system() Function Prologue

14

esp : Stack pointer
ebp : Frame Pointer



Task C : Argument for system()

15

Function Epilogue

esp : Stack pointer
ebp : Frame Pointer



Function Prologue and Epilogue example

16

1

2

1

2

Function prologue

Function epilogue 
8(%ebp) ⇒ %ebp + 8



How to Find system()’s Argument Address?

17

Modified 
Return 
Address

vul_func() 
epilogue

system() 
prologue

Use of 
system()’s 
argument

● In order to find the system() argument, we need to understand 
how the ebp and esp registers change with the function calls. 

● Between the time when return address is modified and system 
argument is used, vul_func() returns and system() prologue 
begins.

Change ebp and esp



Memory Map to Understand system() Argument

18



Return address is 
changed to system() 
address.

ebp is replaced by 
esp after vul_func() 
epilogue

Jump to system()

system() prologue 
is executed

ebp is set to current 
value of esp

“/bin/sh” is 
stored in ebp+8

Check the memory map

Flow Chart to understand system() argument

19

ebp + 4 is treated as return address of system(). We 
can put exit() address so that on system() return exit() 
is called and the program doesn’t crash.



Malicious Code

20

ebp + 4

ebp + 8

ebp + 12



Launch the attack

● Execute the exploit code and then the vulnerable 
code

21



Summary

● The Non-executable-stack mechanism can be 
bypassed

● To conduct the attack, we need to understand low-
level details about function invocation

● The technique can be further generalized to Return 
Oriented Programming (ROP)

22


