
Format-String Vulnerability

Instructor: Fengwei Zhang

1SUSTech CS 315 Computer Security

Outline

● Format String

● Access optional arguments

● How printf() works

● Format string attack

● How to exploit the vulnerability

● Countermeasures

2

Format String

● printf()- To print out a string according to a
format.

int printf(const char *format,
…);

● The argument list of printf() consists of :
○ One concrete argument format
○ Zero or more optional arguments

● Hence, compilers don’t complain if less arguments
are passed to printf() during invocation.

3

Access Optional Arguments

4

● myprint() shows how printf()
actually works.

● Consider myprintf() is invoked in
line 7.

● va_list pointer (line 1) accesses
the optional arguments.

● va_start() macro (line 2)
calculates the initial position of
va_list based on the second
argument Narg (last argument
before the optional arguments
begin)

Access Optional Arguments

5

● va_start() macro gets the start
address of Narg, finds the size
based on the data type and sets the
value for va_list pointer.

● va_list pointer advances using
va_arg() macro.

● va_arg(ap, int) : Moves the ap
pointer (va_list) up by 4 bytes.

● When all the optional arguments
are accessed, va_end() is called.

How printf() Access Optional Arguments

6

● Here, printf() has three optional arguments. Elements starting with “%” are
called format specifiers.

● printf() scans the format string and prints out each character until “%” is
encountered.

● printf() calls va_arg(), which returns the optional argument pointed by va_list
and advances it to the next argument.

How printf() Access Optional Arguments
● When printf() is invoked, the

arguments are pushed onto the
stack in reverse order.

● When it scans and prints the
format string, printf() replaces
%d with the value from the first
optional argument and prints
out the value.

● va_list is then moved to the
position 2.

7

Missing Optional Arguments

● va_arg() macro doesn’t
understand if it reached the
end of the optional argument
list.

● It continues fetching data from
the stack and advancing
va_list pointer.

8

Format String Vulnerability

● In these three examples,
user’s input (user_input)
becomes part of a format
string.

9

What will happen if
user_input contains format
specifiers?

Vulnerable Code

10

Vulnerable Program’s Stack

Inside printf(), the starting
point of the optional
arguments (va_list pointer) is
the position right above the
format string argument.

11

What Can We Achieve?

● Attack 1 : Crash program
● Attack 2 : Print out data on the stack
● Attack 3 : Change the program’s data in the

memory
● Attack 4 : Change the program’s data to specific

value
● Attack 5 : Inject Malicious Code

12

Attack 1 : Crash Program

● User input: %s%s%s%s%s%s%s%s
● printf() parses the format string.
● For each %s, it fetches a value where va_list points to

and advances va_list to the next position.
● As we give %s, printf() treats the value as address and

fetches data from that address. If the value is not a
valid address, the program crashes.

13

Attack 2 : Print Out Data on the Stack

● Suppose a variable on the stack contains a secret
(constant) and we need to print it out.

● Use user input: %x%x%x%x%x%x%x%x
● printf() prints out the integer value pointed by va_list

pointer and advances it by 4 bytes.
● Number of %x is decided by the distance between the

starting point of the va_list pointer and the variable. It
can be achieved by trial and error.

14

Attack 3: Change Program’s Data in Memory

Goal: change the value of var variable from 0x11223344 to some other
value.

● %n: Writes the number of characters printed out so
far into memory.

● printf(“hello%n”,&i) ⇒ When printf() gets to %n, it
has already printed 5 characters, so it stores 5 to
the provided memory address.

● %n treats the value pointed by the va_list pointer
as a memory address and writes into that location.

● Hence, if we want to write a value to a memory
location, we need to have it’s address on the stack.

15

● The address of var is given in the beginning of the input so that it is
stored on the stack.

● $(command): Command substitution. Allows the output of the command
to replace the command itself.

● “\x04” : Indicates that “04” is an actual number and not as two ascii
characters.

16

Assuming the address of var is 0xbffff304 (can be obtained using gdb)

Attack 3: Change Program’s Data in Memory

● var’s address (0xbffff304)
is on the stack.

● Goal : To move the va_list
pointer to this location and
then use %n to store some
value.

● %x is used to advance the
va_list pointer.

● How many %x are
required?

17

Attack 3: Change Program’s Data in Memory

● Using trial and error, we check how many %x are needed to print out
0xbffff304.

● Here we need 6 %x format specifiers, indicating 5 %x and 1 %n.

● After the attack, data in the target address is modified to 0x2c (44 in
decimal).

● Because 44 characters have been printed out before %n.

18

Attack 3: Change Program’s Data in Memory

Attack 4: Change Program’s Data to a Specific Value

Goal: To change the value of var from 0x11223344 to
0x9896a9

19

printf() has already printed out 41 characters before %.10000000x, so,
10000000+41 = 10000041 (0x9896a9) will be stored in 0xbffff304.

Precision modifier : Controls the minimum number of digits to print.
printf(“%.5d”, 10) prints number 10 with 5 digits: “00010”

Attack 4 : A Faster Approach

20

%n : Treats argument as a 4-byte integer

%hn : Treats argument as a 2-byte short integer. Overwrites only 2 significant bytes of the argument.

%hhn : Treats argument as a 1-byte char type. Overwrites the least significant byte of the argument.

Attack 4 : A Faster Approach
Goal: change the value of var to 0x66887799

● Use %hn to modify the var variable two bytes at a time.
● Break the memory of var into two parts, each with two

bytes.
● Most computers use the Little-Endian architecture

○ The 2 least significant bytes (0x7799) are stored at address
0xbffff304

○ The 2 significant bytes (0x6688) are stored at 0xbffff306

● If the first %hn gets value x, and before the next %hn, t
more characters are printed, the second %hn will get
value x+t.

21

Attack 4 : A Faster Approach

● Overwrite the bytes at 0xbffff306 with 0x6688.
● Print some more characters so that when we reach
0xbffff304, the number of characters will be increased to
0x7799.

22

Attack 4 : A Faster Approach

23

● Address A : first part of address of var (4 chars)
● Address B : second part of address of var (4 chars)
● 4 %.8x : To move va_list to reach Address 1 (Trial and error, 4x8=32)
● @@@@ : 4 chars
● 5 _ : 5 chars
● Total : 12+5+32 = 49 chars

Attack 4 : A Faster Approach
● To print 0x6688 (26248), we need 26248 - 49 = 26199

characters as precision field of %x.

● If we use %hn after first address, va_list will point to the
second address and same value will be stored.

● Hence, we put @@@@ between two addresses so that we
can insert one more %x and increase the number of printed
characters to 0x7799.

● After first %hn, va_list pointer points to @@@@, the
pointer will advance to the second address. Precision field
is set to 4368 =30617 - 26248 -1 in order to print 0x7799
(30617) when we reach second %hn.

24

Attack 5: Inject Malicious Code

Goal : To modify the return address of the vulnerable code
and let it point it to the malicious code (e.g., shellcode to
execute /bin/sh) . Get root access if vulnerable code is a SET-
UID program.

Challenges :
● Inject Malicious code in the stack
● Find starting address (A) of the injected code
● Find return address (B) of the vulnerable code
● Write value A to B

25

Attack 5 : Inject Malicious Code

● Using gdb to get the return address and start address of
the malicious code.

● Assume that the return address is 0xbffff38c
● Assume that the start address of the malicious code is
0xbfff358

Goal : Write the value 0xbffff358 to address 0xbffff38c
Steps :
● Break 0xbffff38c into two contiguous 2-byte memory

locations : 0xbffff38c and 0xbffff38e.
● Store 0xbfff into 0xbffff38e and 0xf358 into
0xbffff38c

26

Attack 5: Inject Malicious Code

27

● Number of characters printed before first
%hn = 12 + (4x8) + 5 + 49102 = 49151
(0xbfff).

● After first %hn, 13144 + 1 =13145 are
printed

● 49151 + 13145 = 62296 (0xbffff358) is
printed on 0xbffff38c

Run the Exploit Code

28

● Compile the vulnerable code with executable stack.

● Make the vulnerable code as a Set-UID program.

● Run the vulnerable program with our input payload

● Switch off the address randomization.

Run the Exploit Code

We couldn’t get the shell using the malicious
shell to execute /bin/sh.

Hypothesis :
● We direct the standard input to a file called input while

running the vul program.
● When /bin/sh is triggered from the input file, it inherits the

standard input.
● But as we reach the end of the file, there is no more input

for the shell program and hence it exits.
● So, the shell program is triggered but exits too quickly

before we can see.

29

A Solution

● Create /tmp/bad as follows :

30

It runs /bin/sh and redirect the standard input (file
descriptor 0) so that the standard output (file
descriptor 1), which is the terminal, is also used as
the standard input.

Countermeasures: Developer

● Avoid using untrusted user inputs for format strings
in functions like printf, sprintf, fprintf, vprintf, scanf,
vfscanf.

31

Countermeasures: Compiler

32

Compilers can detect potential format string vulnerabilities

● Use two compilers to
compile the program:
gcc and clang.

● We can see that there
is a mismatch in the
format string.

Countermeasures: Compiler

33

● With default settings, both compilers gave warning for the first printf().

● No warning was given out for the second one.

Countermeasures: Compiler

34

● On giving an option -wformat=2, both compilers give warnings for both
printf statements stating that the format string is not a string literal.

● These warnings just act as reminders to the developers that there is a potential
problem but nevertheless compile the programs.

Countermeaseures

● Address randomization: Makes it difficult for the attackers to
guess the address of the address of the target memory (
return address, address of the malicious code)

● Non-executable Stack/Heap: This will not work. Attackers
can use the return-to-libc technique to defeat the
countermeasure.

● StackGuard: This will not work. Unlike buffer overflow, using
format string vulnerabilities, we can ensure that only the
target memory is modified; no other memory is affected.

35

Summary

● How format string works

● Format string vulnerability

● Exploiting the vulnerability

● Injecting malicious code by exploiting the
vulnerability

36

