AEEE Py

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

&

TEHBES Iﬁ%

Department of Computer Science and Engineering

CS 315 Computer Security Course

Lab 6: OS Security for the Internet of Things

Introduction

The Internet of Things (loT) is an emerging technology that will affect our daily life. It is
reported that there would be 100 billion connected IoT devices by 2025, so the impact of
loT on will be impressive and security is an important part. For the purpose of this lab, we
will focus on the operating system security for the loT devices.

There are a number of newly developed operating systems for the loT. For instance,
Contiki is an open source operating system for the Internet of Things. Contiki connects
tiny low-cost, low-power microcontrollers to the Internet. In May 2015, Google announced
Brillo, an operating system for the loT. Brillo is a solution from Google for building
connected devices, and it is developed based on the Android system. Zephyr is another
real time operating system that is designed for loT devices. Zephyr open source project
is announced by Linux foundation in February 2016. In this lab, we use Zehpyr as a study
example to explore the OS security of loT devices. Specifically, we will exploit buffer
overflow vulnerabilities in an application and understand the security features of Zephyr
OS. After you finish the lab assignment, you will be expected to answer following
questions:

e What security features does Zephyr have?

e Do applications share the same address space with the OS kernel?

e Does Zephyr have defense mechanisms such as non-executable stack or
Address Space Layout Randomization (ASLR)?

¢ Do textbook attacks (e.g., buffer overflow or heap spray) work on Zephyr?

Software Requirements
All required files are packed and configured in the provided virtual machine image.

- The VMWare Software
http://apps.eng.wayne.edu/MPStudents/Dreamspark.aspx

- The Ubuntu 14.04 Long Term Support (LTS) Version
http://www.ubuntu.com/download/desktop

- Zephyr: Real Time OS for lIoT — A Linux Foundation Collaborative Project
https://www.zephyrproject.org/downloads

Fengwei Zhang — CS 315 Computer Security Course 1

Starting the Lab 6 Virtual Machine

In this lab, we use Ubuntu as our VM image. Select the VM named “Labé.

Virtual Machine Library n = A o @ < (@ 4
> R = @ Q ty @ o) ta3pm 3

Resume Settings Snapshots

Lab6

Ubuntu
"
e
B o
B » Fengwei Zhang
]
= Student
=
2 [

Notes Guest Session
Hard Disks Snapshots Ml Reclaimable ubuntu® 14.04 LTS

9.368 0 bytes

Login the Ubuntu image with username student, and password [TBA in the class]. Below

is the screen snapshot after login.

[NON] @) Lab6
n m A @ < [© R <
Ubuntu Desktop 3 £ 4) 1:22PM I

Fengwei Zhang — CS 315 Computer Security Course

4: s Wi L%

‘7' SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
‘ L

Setting up the Zephyr Development Enwronment

You can find detailed documents from Zephry Project website:

https://www.zephyrproject.org/doc

Download the Zephyr Source Code

The code is hosted at the Linux Foundation with a Gerrit backend that supports
anonymous cloning via git.

We can check out the Zephyr source code using git command. You can see that the
zephyr-project folder is under the home directory.

https://www.zephyrproject.orqg/

Note that you need to install git if you want to try it on your own machine. Note that our
lab image has downloaded the Zephyr source code at ~/zephyr-project/

Installing Requirements and Dependencies

If you use your own laptop or desktop to do the lab, you need to install the dependencies
by executing the following command. On our Ubuntu image, | have installed them for you.

$ sudo apt-get install git make gcc gcc-multilib g++ g++-multilib

Setting the Project’s Environment Variables
$ cd zephyr-project

$ source zephyr-env.sh

-

lab6@ubuntu: ~/zephyr-project

lab6@ubuntu:~$ cd zephyr-project
lab6@ubuntu:~/zephyr-project$ source zephyr-env.sh
lab6@ubuntu:~/zephyr-projects |

Fengwei Zhang — CS 315 Computer Security Course 3

4: s Wi L%

‘7' SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
‘ L

Installing the Zephyr Software Development Kit

Zephyr's SDK contains all necessary tools and cross-compilers needed to build the kernel
on all supported architectures. Additionally, it includes host tools such as a custom QEMU
and a host compiler for building host tools if necessary. The SDK supports the following
architectures: 1A-32, ARM, and ARC.

Next, you need to follow these steps to install the SDK on your Ubuntu Linux VM.

Step 1. Download the SDK self-executable script from zephyr website. The image has
downloaded the script; the file name is zephyr-sdk-0.8.2-i686-setup.run. See the
screenshot below.

M)

labs@ubuntu: ~fzephyr-project
lab&@ubuntu:~/zephyr-projects ls

arch Lncluds MAINTAINERS subsYy

boards Kbuild Makefile tes
defaults.tc Kconfig Makefile.inc zephyr-env.sh

hconflg zephyr Makefile.test zephyr-sdk-o. 6 retup.run

B.2-16
zephyr-sdk-0.8.2- tnB setup.run.l

l‘r
ext LICENSE
LabS@ubuntu:~/zephyr- pro;ects

Fengwei Zhang — CS 315 Computer Security Course 4

6 ;51%4%:&%%

a,

,/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
\“Iai

Step 2. Run the installation script
$ chmod a+x zephyr-sdk-0.8.2-i686-setup.run
$ sudo ./zephyr-sdk-0.8.2-i686-setup.run

The screenshot below shows the executions of step 1 and 2. We can see that the default
directory of Zephyr SDK is installed at /opt/zephyr-sdk directory. Since | have installed
the SDK in the image before, you will see a message that ask if you want to remove the
existing directory /opt/zephyr. Just select yes.

)

labs@ubuntu: ~/zephyr-project

lab&@ubuntu:~/zephyr-projectS wget https://nexus.zephyrproject.org/content/repositories/releases
jorgj:ephyrprojec[j;ephyr-%dk/ﬁ_a‘?-iﬁaﬁx;ephyr-qdk-ﬁ.B.P-iﬁBd-qetup_run

--2017-83-14 10:48:25-- https://nexus.zephyrproject.org/content/repositories/releases/org/zephy
rproject/zephyr-sdk/0.8.2-1686/zephyr-sdk-06.8.2-1686-setup.run

Resolving nexus.zephyrproject.org (nexus.zephyrproject.org)... 199.19.213.246

Connecting to nexus.zephyrproject.org (nexus.zephyrproject.org)|199.19.213.246|:443... connected

HTTP request sent, awaiting response... 288 0K
Length: 398661157 (373M) [applicationfoctet-stream]
saving to: ‘zephyr-sdk-8.8.2-1686-setup.run.1’

398,661,157 1.61M8/s in 3m 17s

2017-83-14 10:51:42 (1.89 MB/s) - ‘zephyr-sdk-0.8.2-1686-setup.run.1’ saved [398661157 /390661157

]

lab6@ubuntu:~/zephyr-projects chmod a+x zephyr-sdk-98.8.2-1686-setup.run
labé@ubuntu:~/zephyr-project$ sudo ./zephyr-sdk-8.8. lﬁBn-setup run
Verifying archive integrity... All good.

Uncompressing SDK for Zephyr 100%

Enter target directory for SDK (default: fopt/zephyr-sdk/):

Installing SDK to fopt/zephyr-sdk

The directory fopt/zephyr-sdk/sysroots will be removed!

Do you want to continue (y/n)?

Invalid input """, please input 'y' or 'n':

] Installing x86 tools...

] Installing arm tools...

] Installing arc tools...

] Installing iamcu tools.

] Installing mips tDoLs,,,

] Installing nios2 tools...

] Installing additional host tools...
cess installing SDK. SDK is ready to be

E'I"nt-:t:-:ta‘n.g.

ab6@ubuntu:~/zephyr-projects l

Fengwei Zhang — CS 315 Computer Security Course 5

6 > EX 27w

\ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
“I m

Step 3. To use the Zephyr SDK, export the following environment variables and use the
target location where SDK was installed. You can just add following lines into the
~/.bashrc file.

$ vim ~/.bashrc

Add these two lines into the file

export ZEPHYR_GCC_VARIANT=zephyr

export ZEPHYR_SDK_INSTALL_DIR=/opt/zephyr-sdk
$ source ~/.bashrc

The screenshot below shows the step 3.

zephyr
fopt/zephyr-sdk

Fengwei Zhang — CS 315 Computer Security Course 6

4: s Wi L%

‘7' SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
‘ L

Building and Running an Application W|th Zephyr

You have successfully setup the development environment for Zephyr. This section
provides all the steps to build a Zephyr kernel containing your application and run it. We
use the Hello World sample application as an example. You can also create your own
application and run it.

Sample Hello World Application

First, let’'s take a look at what a sample application of Zephyr look like. Go the source
directory of the Hello World sample.

$ cd ~/zephyr-project/samples/hello_world/src
$ vim main.c

The screenshot below shows the source code of the Hello World application.

lab6@ubuntu: ~fzephyr-project/samples/hello_world/src

main().

printk(, CONFIG_ARCH);

"main.c"” 13L, 211C

Fengwei Zhang — CS 315 Computer Security Course 7

(&) As M L%

\f 3 w y/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
NS

Building a Sample Application

To build the Hello World sample application, you can just by executing following
commands:

$ cd ~/zephyr-project/samples/hello_world/
$ make

F W

lab6@ubuntu: ~fzephyr-project/samples/hello_world

lab6@ubuntu:~/zephyr-project/samples/hello_world$

labé@ubuntu:~/zephyr-project/samples/hello_world$
lab6@ubuntu:~/zephyr-project/samples/hello_world$ makel]

The above screenshot of make will build the hello_world sample application using the
default settings defined in the application’s Makefile. You can build for a different platform
by defining the variable BOARD with one of the supported platforms, for example:

$ make BOARD=arduino_101

The screenshot below shows the result after executing $ make BOARD=arduino_101

cc kernel/thread.o

cC kernel/thread_abort.o
cc kernel/timer.o

cc kernel /work_q.o

AR kernel/lib.a

cc src/main.o

LD srcfbuilt-in.o

AR libzephyr.a

LINK zephyr.lnk
SIDT staticldt.o

LINK zephyr.elf

BIN zephyr.bin
make[2]: Leaving directory " fhome/labé/zephyr-project/samples/hello_world/outdir/farduino_181'
make[1]: Leaving directory " /home/lab6/zephyr-project’
lab6@ubuntu:~/zephyr-project/samples/hello_world$

The screenshot below shows the supported board by Zephyr project including Intel
Galileo Gen1 and Gen2. For the purpose of this lab, we will test the application on x86
QEMU. You can also type:

$ make help

This gets a full list of supported boards and other useful commands.

Fengwei Zhang — CS 315 Computer Security Course 8

/o > EX 27w

\ 5 % SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
z <E /

x86 Instruction Set

e Arduino 101

e Quark D2000 CRB

¢ Galileo Gen1/Gen2

e Minnowboard Max

e X86 Emulation (QEMU)

ARM (v7-M and v7E-M) Instruction Set

¢ ARM Cortex-M3 Emulation (QEMU)
e Arduino Due
e Freescale FRDM-K64F

ARC EM4 Instruction Set

e Arduino 101

The sample projects for the microkernel and the nanokernel are found at ~/zephyr-
project/samples with each sample having a microkernel and nanokernel specific build.
After building an application successfully, the results can be found in the outdir sub-
directory under the application root directory. The ELF binaries generated by the build
system are named by default zephyr.elf. The screenshot below shows listing the files in
the outdir directory.

F W

lab6@ubuntu: ~/zephyr-project/samples/hello_world/outdir

lab6@ubuntu:~/zephyr-project/samples/hello_world$
lab6@ubuntu:~/zephyr-project/samples/hello_world$
lab6@ubuntu:~/zephyr-project/samples/hello_worlds$

lab6@ubuntu:~/zephyr-project/samples/hello_world$ cd outdir/
lab6@ubuntu:~/zephyr-project/samples/hello_world/outdir$ 1s
arduino_101 gqemu_x86

lab6@ubuntu: project/samples/hello_world/outdir$ I

Running a Sample Application

To perform a rapid testing of the hello world application, we can use QEMU and the x86
emulation board configuration (qemu_x86) by executing the following command:

$ cd ~/zephyr-project/samples/hello_world

$ make BOARD=gemu_x86 gemu

Fengwei Zhang — CS 315 Computer Security Course 9

7 g
(B) A3 WHALY

\&3 %/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
{J*ag;//

ab6@ubuntu:~/zephyr-project/samples/hello_world$
ab6@ubuntu:~/zephyr-project/samples/hello_world$ make BOARD=gemu_x86 gemu
ake[1]: Entering directory “/home/labé/zephyr-project’

ake[2]: Entering directory " /home/lab6/zephyr-project/samples/hello_world/outdi
r/qemu_x86"

Using /home/lab6/zephyr-project as source for kernel

GEN . /Makefile

CHK include/generated/version.h

CHK misc/generated/configs.c

CHK include/generated/offsets.h

CHK misc/generated/sysgen/prj.mdef
o exit from QEMU enter: 'CTRL+a, x'
[QEMU] CPU: gemu32

The screenshot above shows the execution of the hello world application using QEMU.

We can see the “Hello World!” is printed out in the terminal. To exit QEMU, we can type
“Ctrl+a, x".

To exit from QEMU enter: 'CTRL+a, x'

[QEMU] CPU: gemu32

w#&x*%* BOOTING ZEPHYR 05 v1.7.99 - BUILD: Mar 14 2017 17:56:18 *%®%+

Hello World! xB6

QEMU: Terminated

make[2]: Leaving directory °fhome/lab6/zephyr-project/samples /hello_worldfoutdir/gemu_x86"
make[1]: Leaving directory " /home/lab6/zephyr-project’
labs@ubuntu:~/zephyr-project/samples/hello_worlds i

Exploiting Buffer Overflows in Zephyr Applications

First, let us write a Zephyr application that contains a buffer overflow vulnerability. Change
the hello world main.c program to the following code as shown in the screenshot.

$ gedit main.c

lab&6@ubuntu:-5 cd zephyr-project/samples/hello_world/src/
lab&@ubuntu:~/zephyr-project/samples/hello_world/src$ gedit main.c

lab&gubuntu:~/zephyr-project/samples/hello_world/srcs | |

Fengwei Zhang — CS 315 Computer Security Course 10

s Wi L%

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

main.c (~fzephyr-project/samples/hello_world/src) - gedit

L=} &= Undo fi

main.c x

ft
* Copyright (c) 2012-2014 Wind River Systems, Inc.
W

* SPDX-License-Identifier: Apache-2.8
*/

#include <zephyr.h=>
#include =misc/printk.h=

N‘Lﬂ-iludz? <string.h=>

i vold overflow (char *str) {

char buffer[18];

strcpy(buffer, str); // Dangerous!

}

int main(void)

{
char *str = “"This is a string that is larger than the buffer size, 18%;
overflow(str);
return 1;

}

C~ Tabwidth:8 - Ln 2, Col 52 INS

From the source code we can see that there is a buffer overflow vulnerability embedded
in the overflow() function. Then, we pass a long string to the overflow() function, the string
will overwrite the return address on the stack and the program would crash because of
the invalid return address. Next, let's compile the application and run it to see what
happens.

As mentioned, to build the application, you can just by executing following commands:
$ cd ~/zephyr-project/samples/hello_world
$ make

To run the application using QEMU and the x86 emulation board configuration
(gemu_x86) by executing the following command:

$ cd ~/zephyr-project/samples/hello_world

$ make BOARD=gemu_x86 gemu

Fengwei Zhang — CS 315 Computer Security Course 11

6 s Wi L%

\ ‘7’ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
“I i 352

As we expected, the application crashes due to an invalid return address.

-

labs@ubuntu: ~fzephyr-project/samples/hello_world

CHK include/generated/offsets.h
To exit from QEMU enter: 'CTRL+a, x'
[QEMU] CPU: gemu32
waww® BOOTING ZEPHYR 05 v1.7.99 - BUILD: Mar 14 2017 17:56:10 wwwww
gemu: fatal: Trying to execute code outside RAM or ROM at @x7420676e

EAX=00183156 EBX=00000000 ECX=00101778 EDX=00101740
ESI=00000000 EDI=00000000 EBP=69T27473 ESP=001083168
EIP=7420676e EFL=00000246 [---Z-P-] CPL=0 II=0 A20=1 SMM=0 HLT=0
ES =0010 ooooeees fFfffffff e0cf93ee DPL=0 DS [-WA]
=0008 oofooees ffffffff e0cfobee DPL=0 C532 [-RA]
=0810 ©0068086 FFFfffff 686cf9306 DPL=0 DS IRLLY
=0010 00000000 00cf9300 DPL=0 DS [-WA]
=0610 00060000 TFFFffff 66cFf9300 DPL=0 DS [-WA]
G5 =0010 ooeoenes fFfffff 00cfo3ee DPL=0 DS [-WA]
LDT=0006 00600000 GGOOFFfff OOGG8206 DPL=0 LDT
TR =0000 00000000 B8 ff 00008b8G DPL=0 TS5532-busy
GDT= 8016008706 Ooooeeo1l7
IDT= 00101330 0600OTff
CRO=0000003f CR2=00000000 CR3=00000000 CR4=00000000
DRO=00000000 DR1=00000000 DRZ=00000006 DR3I=00000000
DR6=Ffffoffe D 00400
CCS=00000000 200008088 CCO=LOGICB
EFER=000000E
FCW=037f FSW=0008 [ST=0] FTW=00 MXCSR=00001f80
FPRO=0000000000000000 0000 FPR1=0000000000000000 0000
FPRZ=0000000000000000 G008 FPR gooeeoB0e000000 0BG
FPR4=0000000000000000 0000 FPR5=0000000000000000 0000
FPR6=000OB0G000000000 0008 FPR7T=0000000000000000 ODOG
XMMBE=00000000000000000000000000000008 XMMO1=00000000000000000000000000000000
XMMB2=-00000000000000000000000000008008 XMMO3-0000000R0E0R00000000000000E00000
XMME4=00000000000000000000000000000000 XMMOS5=00000000000000000000000000000000
XMMBG6=D00000000E0000000000000000000008 XMMET=00000000000000000000000000000000
make[2]: *** [run] Aborted (core dumped)
make[2]: Leaving directory " fhome/lab6/zephyr-project/samples/hello_world/outdir/qemu_x86"
make[1]: *** [sub-make] Error 2
make[1]: Leaving directory " fhome/lab6/zephyr-project’
make: *** [gemu] Error 2
labé@ubuntu:~/zephyr-project/samples/hello _world$s

W

L=
i

'n
v

Furthermore, QEMU also crashes and you will see a pop-up window as the screenshot
below.

Sorry, the application gemu-system-i386 has stopped unexpectedly.

If you notice Further problems, try restarting the computer.

Send an error report to help fix this problem

Show Details Continue

Fengwei Zhang — CS 315 Computer Security Course 12

/o > EX 27w

\ 5 % SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
z <E /

We can see that the EIP register has the value 0x7420676e. In order to execute
something meaningful after exploiting a buffer overflow vulnerability, we need to control
the EIP register. Next, adjust the input string in the main.c to change the EIP register to
0x41414141. Note that 0x41 is the ASCII value of character ‘A’.

We can just simply edit the main() function as the screenshot below
|
int main (void) {

char #*str = "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAAAAAAAAAAAAA" ;
overflow(str);

return 1;

To re-compile the application, you need to re-run the zephyr environment script zephyr-
evn.sh.

$ cd ~/zephyr-project
$ source ./zephyr-env.sh

Then you can re-compile the application and run it. You will see the EIP register will be
0x41414141 as the screenshot below.

Fengwei Zhang — CS 315 Computer Security Course 13

/6 FEZ 'Y,

\ 7 %/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
¢ <E /

gemu: fatal: Trying to execute code outside RAM or ROM at Ox41414141

EAX=00103136 EBX=00000000 ECX=0010176b EDX=00101740

ESI=000080060 EDI=00000008 EBP=41414141 E5P=00183148

EIP=41414141 EFL=00000246 [---Z-P-] CPL=0 II=0 A28=1 SMM=0 HLT=0

ES =0010 eceeoeed FFFfffff 8ecf93e6 DPL=0 DS [-WA]

5 =0008 00000006 FFffffff e6cfoboe DPL=0 C532 [-RA]

=0810 eoee8eed FFFfffff 86cf93068 DPL=0 DS [-WA]

=0010 ooooooee frffffff eocfo308 DPL=0 DS [-WA]

=0810 oeee8eed FFFfffff 86cf93068 DPL=0 DS [-WA]

=0010 oooeacee frffffff eecfo3ee DPL=O DS [-WA]

LDT=0000 60060008 OGBOFfff OO0GB206 DPL=0 LDT

TR =0080 80000000 ceeaffff ©00008bOG DPL=0 T5532-busy

GDT= 00160676 ooobeelr

IDT= 00101310 oe00aTff

CRO=0000003F CR2=00000000 CR3=00000000 CR4=D00000000

DRO=00000000 DR1=00000000 DR2=-00000000 DR3=00000000

DRe=Ffffeffe DR7=00000400

CCS=00000000 CCD=00000000 CCO=LOGICB

EFER=0000000000000000

FCW=037f FSW=0000 [S5T=0] FTW=00 MXCSR=00001f80

FPRE=0000000000000000 0000 FPR1=0000000000000000 0000

FPRZ2=0000000000000008 0800 FPPE GUDGGBBGDQ&GHBQG gaaa

FPR4=0000000000000000 0000 ge6e

FPRG=0000000000000008 0800 FPR?-GUDGGOBGBDﬁGDﬁOG gaaa
XMMBO=00000000000000000000000000000000 XMME1=00000000000000000000000000000000
XMMeZ=000000000000000000000000000000008 XMME3=0000GOR0G000000G000G0000B000000D
XMMB4=00000000000000000000000000000000 XMME5=00000000000000000000000000000000
XMMAG6=000000000000000008000000000060008 XMMET=00000000G00000000000000800000000
make[2]: *** [run] Aborted (core dumped)

make[2]: Leaving directory " fhome/lab6/zephyr-project/samples /hello_world/outdi
Jqemu_xB86"

make[1]: *** [sub-make] Errur 2

make[1]: Leaving directory " fhome/flab6/zephyr-project’

make: *** [gemu] Error 2

lab&@ubuntu:~/zephyr-project/samples /hello_worlds U

(@l
L

7

-

=
W ion

(]

gemu: fatal: Trying to execute code outside RAM or ROM at 0x41414141

EAX=00104ble EBX=00000000 ECX=00101f3c EDX=00101f0e
ESI=00000000 EDI=00000000 EBP=41414141 ESP=00104b30
EIP=41414141 EFL=00000246 [---Z-P-] CPL=0 II=0 A20=1 SMM=0 HLT=0

CC —_Aando anonnoann FFFFFFFF aa-~Fn2aoa NNl & *»e r wuail

To re-compile the application, you need to re-run the zephyr environment script zephyr-
evn.sh.

$ cd ~/zephyr-project

$ source ./zephyr-env.sh

Fengwei Zhang — CS 315 Computer Security Course 14

AEEE Py

3 ‘/ SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
Application Stack Frame on Zephyr

To do more meaningful things such as executing shell code on the stack, we need to
understand the application’s stack frame. We have done the similar tasks in the Lab 2.
As mentioned, for each Zephyr application, the compilation binaries are stored in a
directory called outdir. We can just go to that directory and use objdump tool to
disassembly the application binary and understand its stack frame.

$ cd ~/zephyr-project/samples/hello_world/outdir/gemu_x86/src
$ objdump —d main.o

The screenshot below shows the disassembly result of main.o binary.

lab6@ubuntu: ~/zephyr-project/samples/hello_world/outdir/gemu_x86/src

lab6@ubuntu:~/zephyr-project/samples/hello_world/outdir/qemu_x86S$ cd src/

lab6@ubuntu:~/zephyr-project/samples/hello_world/outdir/qemu_x86/src$ 1s
built-in.o main.o

lab6@ubuntu:~/zephyr-project/samples/hello_world/outdir/qemu_x86/src$ objdump -
main.o

main.o: file format elf32-1386

Disassembly of section .text.__k_mem_pool_quad_block_size_define:

00000000 <k mem pool quad block size define>:
0: 55 push %ebp
89 e5 mov %esp,%ebp

1
3: 5d pop %ebp
4 c3 ret

Disassembly of section .text.main:

00000000 <main>:
55 push %ebp
89 e5 mov %esp,%ebp
68 00 00 00 00O push SOx0
68 04 00 00 00 push S0x4
- e8 fc ff ff ff call e <main+0Oxe>
12: 58 pop %eax
13: 5a pop %edx
14: c9 leave
15: c3 ret
lab6@ubuntu:~/zephyr-project/samples/hello_world/outdir/qemu_ x86/src$

Fengwei Zhang — CS 315 Computer Security Course 15

a%#ﬁ:«%

SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Assignments for Lab 6

1. Read the lab instructions above and finish all the tasks.
2. Answer the questions in the Introduction section, and justify your answers.
Simple yes or no answer will not get any credits.
a. What security features does Zephyr have?
b. Do applications share the same address space with the OS kernel?
c. Does Zephyr have defense mechanisms such as non-executable stack or
Address Space Layout Randomization (ASLR)?
d. Do textbook attacks (e.g., buffer overflow or heap spray) work on Zephyr?
3. Change the EIP register to the value Oxdeadbeef, and show me the screenshot
of the EIP value when the application crashes.

Extra Credit (10pt): Execute shell code on the stack. The shell code could be
launching a shell or print a hello string.

Happy Hacking!

Fengwei Zhang — CS 315 Computer Security Course 16

