Qsym : A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing

INSU YUN, SANGHO LEE, AND MENG XU, TAESOO KIM, GEORGIA INSTITUTE OF TECHNOLOGY;
YEONGJIN JANG, OREGON STATE UNIVERSITY;

\§ @/

Presented by: Oskars Dauksts I‘ZIJ \ 4 £
October 30, 2018

Overview

VY Ve VY V V VvV

Background
Introduction
Motivation
Design
Implementation
Evaluation
Discussion

Conclusion

\§ @/

b A 4

Background

Background — Key Terms 4

» Concolic Execution - Combines symbolic execution with concrete
execution

» Symbolic execution - Allows for execution of all possible paths

» Concrete execution — Concrete values that guide the execution
through constraints

» Fuzzing - QA technique that involves inputting large amount of
iNnputs to test coding errors, input filfering and other loopholes.

» Hybrid Fuzzing — Concolic Execution + Fuzzing

\§ @/

b A 4

Background 5

» Limitations to hybrid fuzzing
» Scaling to real-world software
» Infroduction of Qsym

» Native execution with symbolic emulation.

» Results

\§ @/

b A 4

Introduction

INntfroduction 7

» Fuzzing
» Quickly discover inputs to execution path with lose conditions
» x>0;

» Concolic Execution

» Good at finding inputs that use complex conditions
» X == Oxdeadbeef;

» Expensive and Slow

» Past Solution: Hybrid Fuzzing

\§ @/

b A 4

INnfroduction - Limits 8

» Suffer from scaling in non-trivial inputs

» Symbolic emulation is too slow

» Infroduced Solution Qsym

» Integrate symbolic emulation to native execution using dynamic binary
translation

» Optimistically solve constraints

» Prune basic blocks

\§ @/

b A 4

Infroduction - Qsym ?

» Fast concolic execution through efficient emulation
» Optimized emulation speed

» Efficient repetitive testing and concrete environment
» Allows fast re-execution, eliminates snapshots

» New heuristics for hybrid fuzzing
» Prune compute intensive blocks

» Real-world bugs

» New bugs discovered

\§ @/

b A 4

10

Motivation

Moftivation — Slow Symbolic Emulation 11

» Why IR
» Machine language -2 IR instructions for easy modeling
» Easy to develop
» Why not IR
» Big overhead
» Sometimes 1 machine instruction = 2 IR instructions

» Caching of IR instructions forces execution on the basic block level

\§ @/

b A 4

Moftivation — Ineffective Snapshot 12

» Why Snapshots
» Eliminates execution overhnead
» Why not Snapshots

» Sometimes hybrid fuzzing does not share a common branch
» Leads fuzzer to wrong code path

» Inferaction with external environments

\§ @/

b A 4

Motivation - Slow and Inflexible 13

Sound Analysis

» Why Sound Analysis
» Guaranteed soundness by collecting complete constraints

» No false expectations

» Why not
» Could lead to never ending analysis
» Ex: file_zmagic()
» Decompression of zlib contains complex constraints
» Otherinteresting code is missed

» Over-constraining the path

\§ @/

b A 4

Motivation - Approach 14

» Slow Symbolic Emulation 2 Remove IR translations
» Pay for implementation complexity
» Ineffective Snapshot 2 Remove snapshot mechanism

» Concrete Execution to model external environment

» Slow and Inflexible Sound Analysis 2 Solve only portion of overly-
constrained paths

\§ @/

b A 4

15

Design

Design - Qsym Architecture 16

Ny V VvV VY

Target
o . program binary
1) Input: Test case and Binary file m Cuptestcases potentilly
exploring new paths Concolic executor

Symbolic emulation Constraint solving

2) Attempts to generate new fest cases Dy by | _TREETE
% 3 Basic blocks (§3.1) Conslrai;ls'(n§r§.zln)e
3) Uses DBT to natively execute the input w b execued

Pruning Basic Blocks Concrete Env. Modeling Optimistic Solving

)

)

)

) (§33) (§3.1) (§32)
5) Symbolic emulation integrated with native execution

)

Prunes Basic blocks

6) Solving all of the constraints while generating new test cases

\§ @/

b A 4

Design - Taminhg Concolic Executor 17

» Instruction-level Symbolic Execution

// If rdx (size) is symbolic op_generic_InterleavelLO(self, args):
__memset_sse2: s = self._vector_size
» Only executes small set of instructions that i et hecir = Brsiolgays 1t
are required to generate symbolic behatd amd.smn,x | Ciomtvector = fargs([(el s ditns)
. . | ’ i return claripy.Concat(*itertools.chain.from_iterable(
COnSTrGIHTS (Flgure]) i reversed(zip(left_vector, right_vector))))
» Solving constraints that are relevant to the target Figure 1
bbranch

» Other concolic executors do it incrementally

. 1 # create user 1 # create user 1 # create user
(Flgure 2) el userone \x£b\xfb\xfb\xfb\xf4\x£f1\x£f1

1 # create user 1 # create user 1 # create user
. . usertwo usertwo. \x£fb\x£b\xfb\x£fb\x0b\x£fb\x£f1

» Re-execution over snapshotting 2 # login 2 # login 2 # login
userone userone \x£b\xfb\x£fb\xfb\xf4\x£1\x£f1
i 1 4 send message | 4 # delete message |4 # delete message
> stm runs nCITIV6|y Initial PoV Qsym Driller

» Concrete external environment

Figure 2

» Executes them by concrete values

\§ @/

b A 4

Design — Optimistic Solving 18

» Qsym generates new test cases from over-constraint problems
» Utilization of Hybrid fuzzer

» Formulates new test inputs

» Optimistically selects some portion of constraints

\§ @/

b A 4

Design — Basic Block Pruning 19

» Elimination of repetitive code execution
» Ex: Compute intensive operations
» Uses Exponential Back off
» Executes block with power of 2
» Grouping multiple execution and Context Sensefivity

» Prevents excessive pruning

\§ @/

b A 4

20

Implementation

Implementation 21

» Total 16k LoC
» Intel Pin for Dynamic Binary Translation (DBT)
» Utilizes libdft for handling system calls
» Supports part of Intel-64 instructions
» Adding support to different type of instructions in the future

Component Lines of code

Concolic execution core 12,528 LoC of C++

Expression generation 1,913 LoC of C++
System call abstraction 1,577 LoC of C++
Hybrid fuzzing 565 LoC of Python

\§ @/

b A 4

22

Discussion

Evaluation - Scaling real-world problems

» Found 13 new bugs
» Stack and Heap overflows
» NULL references

» Reason for better scaling than state of art fuzzers

» Ability fo detect errors in Incomplete or Incorrect systems calls

Program Bug Type

Syscall

libtiff Erroneous system calls

openjpeg Unsupported system calls

tcpdump Erroneous system calls
libarchive = Unsupported system calls
ffmpeg Unsupported system calls

mmap
set_robust_list
mmap

fcentl
rt_sigaction

23

\§ @/

b A 4

Evaluation — Code Coverage Effectiveness 24

» Qsym vs AFL fuzzer on liIbPNG project
» 6 hourrun

» Dummy input at 0%

» 141 samples

(o8
(-]

o
S

._.
o

<«
<
p—
D)
on
<
i
)
>
o
o
()
o
o
@)

0% 20% 40% 60% 80% 100%

Initial seed ratio : :.; A Z/‘ ;

A 4

Evaluation — Fast Symbolic Evaluation 25

Qsym Driller Qsym Norm Driller

Evaluation — Optimistic Solving

Time (ms)

» Relax on over constraint variables

opt +1 +2 +4 +8 +16

base64

base64

opt +1 +2 +4 +8 +16

opt +1 +2 +4 +8 +16

26

md5Ssum

0
2 3 4 5

5 0 1
= w/ optimistic —©— w/o optimistic

40

20

opt +1 +2 +4 +8 +16

—>— Time for optimistic solving —O— # of bugs

Evaluation — Pruning Basic Blocks 27

» Effect of pruning basic blocks
» Reduced execution time

» Bigger code coverage

~1

5
50
5

[3] <
Time (min)

<

- context

w/ pruning w/0 pruning - grouping
sensitivity

\§ @/

b A 4

DISCUSSION 28

» Adoption beyond fuzzing

» Basic block pruning can be applied to parsers

» Applied to other concolic executors
» Complementing each other with other fuzzers

» Can be used with fuzzers that enhance currently used AFL fuzzer
» Limitations

» Bound to theoretical limits fo constrain solving

> X86_64

» Not all instructions are supported

\§ @/

b A 4

29

Conclusion

ConclUsi@ii 30

» Fast concolic execution engine tailored to use with hybrid fuzzers
» Scalable for real world applications
» Outperformed current fuzzing tools

» Found new undiscovered bugs

\§ @/

b A 4

