
Qsym : A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing

INSU YUN, SANGHO LEE, AND MENG XU, TAESOO KIM, GEORGIA INSTITUTE OF TECHNOLOGY;

YEONGJIN JANG, OREGON STATE UNIVERSITY;

Presented by: Oskars Dauksts
October 30, 2018

1

Overview

u  Background

u  Introduction

u  Motivation

u  Design

u  Implementation

u  Evaluation

u  Discussion

u  Conclusion

2

Background

3

Background – Key Terms

u  Concolic Execution – Combines symbolic execution with concrete
execution

u  Symbolic execution – Allows for execution of all possible paths

u  Concrete execution – Concrete values that guide the execution
through constraints

u  Fuzzing – QA technique that involves inputting large amount of
inputs to test coding errors, input filtering and other loopholes.

u  Hybrid Fuzzing – Concolic Execution + Fuzzing

4

Background

u  Limitations to hybrid fuzzing

u  Scaling to real-world software

u  Introduction of Qsym

u  Native execution with symbolic emulation.

u  Results

5

Introduction

6

Introduction

u  Fuzzing

u  Quickly discover inputs to execution path with lose conditions

u  x > 0;

u  Concolic Execution

u  Good at finding inputs that use complex conditions

u  x == 0xdeadbeef;

u  Expensive and Slow

u  Past Solution: Hybrid Fuzzing

7

Introduction - Limits

u  Suffer from scaling in non-trivial inputs

u  Symbolic emulation is too slow

u  Introduced Solution Qsym

u  Integrate symbolic emulation to native execution using dynamic binary
translation

u  Optimistically solve constraints

u  Prune basic blocks

8

Introduction - Qsym

u  Fast concolic execution through efficient emulation

u  Optimized emulation speed

u  Efficient repetitive testing and concrete environment

u  Allows fast re-execution, eliminates snapshots

u  New heuristics for hybrid fuzzing

u  Prune compute intensive blocks

u  Real-world bugs

u  New bugs discovered

9

Motivation

10

Motivation – Slow Symbolic Emulation

u  Why IR

u  Machine language à IR instructions for easy modeling

u  Easy to develop

u  Why not IR

u  Big overhead

u  Sometimes 1 machine instruction = 2 IR instructions

u  Caching of IR instructions forces execution on the basic block level

11

Motivation – Ineffective Snapshot

u  Why Snapshots

u  Eliminates execution overhead

u  Why not Snapshots

u  Sometimes hybrid fuzzing does not share a common branch

u  Leads fuzzer to wrong code path

u  Interaction with external environments

12

Motivation - Slow and Inflexible
Sound Analysis

u  Why Sound Analysis

u  Guaranteed soundness by collecting complete constraints

u  No false expectations

u  Why not

u  Could lead to never ending analysis

u  Ex: file_zmagic()

u  Decompression of zlib contains complex constraints

u  Other interesting code is missed

u  Over-constraining the path

13

Motivation - Approach

u  Slow Symbolic Emulation à Remove IR translations

u  Pay for implementation complexity

u  Ineffective Snapshot à Remove snapshot mechanism

u  Concrete Execution to model external environment

u  Slow and Inflexible Sound Analysis à Solve only portion of overly-
constrained paths

14

Design

15

Design - Qsym Architecture

u  1) Input: Test case and Binary file

u  2) Attempts to generate new test cases

u  3) Uses DBT to natively execute the input

u  4) Prunes Basic blocks

u  5) Symbolic emulation integrated with native execution

u  6) Solving all of the constraints while generating new test cases

16

Design - Taming Concolic Executor

u  Instruction-level Symbolic Execution

u  Only executes small set of instructions that
are required to generate symbolic
constraints (Figure 1)

u  Solving constraints that are relevant to the target
branch

u  Other concolic executors do it incrementally
(Figure 2)

u  Re-execution over snapshotting

u  Qsym runs natively

u  Concrete external environment

u  Executes them by concrete values

17

Figure 1

Figure 2

Design – Optimistic Solving

u  Qsym generates new test cases from over-constraint problems

u  Utilization of Hybrid fuzzer

u  Formulates new test inputs

u  Optimistically selects some portion of constraints

18

Design – Basic Block Pruning

u  Elimination of repetitive code execution

u  Ex: Compute intensive operations

u  Uses Exponential Back off

u  Executes block with power of 2

u  Grouping multiple execution and Context Sensetivity

u  Prevents excessive pruning

19

Implementation

20

Implementation

u  Total 16k LoC

u  Intel Pin for Dynamic Binary Translation (DBT)

u  Utilizes libdft for handling system calls

u  Supports part of Intel-64 instructions

u  Adding support to different type of instructions in the future

21

Discussion

22

Evaluation - Scaling real-world problems

u  Found 13 new bugs

u  Stack and Heap overflows

u  NULL references

u  Reason for better scaling than state of art fuzzers

u  Ability to detect errors in Incomplete or Incorrect systems calls

23

Evaluation – Code Coverage Effectiveness

u  Qsym vs AFL fuzzer on libPNG project

u  6 hour run

u  Dummy input at 0%

u  141 samples

24

Evaluation – Fast Symbolic Evaluation

25

Evaluation – Optimistic Solving

u  Relax on over constraint variables

26

Evaluation – Pruning Basic Blocks

u  Effect of pruning basic blocks

u  Reduced execution time

u  Bigger code coverage

27

Discussion

u  Adoption beyond fuzzing

u  Basic block pruning can be applied to parsers

u  Applied to other concolic executors

u  Complementing each other with other fuzzers

u  Can be used with fuzzers that enhance currently used AFL fuzzer

u  Limitations

u  Bound to theoretical limits to constrain solving

u  X86_64

u  Not all instructions are supported

28

Conclusion

29

Conclusion

u  Fast concolic execution engine tailored to use with hybrid fuzzers

u  Scalable for real world applications

u  Outperformed current fuzzing tools

u  Found new undiscovered bugs

30

