
QSYM : A PRACTICAL CONCOLIC
EXECUTION ENGINE

TAILORED FOR HYBRID FUZZING

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang and Taesoo Kim,

FINDING SECURITY BUGS

•  Fuzzing

•  Automated test to monitor exceptions (crashes & memory leaks)

•  Pro: general inputs (loose branch condition: x<1000)

•  Con: specific inputs

FINDING SECURITY BUGS

•  Concolic Execution - concrete execution drive the symbolic execution through
specific path
•  Symbolic Execution

•  Execution through all paths

•  Concrete Execution

•  Executing with values

•  Pro: specific inputs (narrow conditions: x == 0xfdsgs)

•  Con: path explosion - feasible paths in a program grows exponentially with an
increase in program size

FINDING SECURITY BUGS – CONCOLIC
TESTING

y = read();

 z = y * 2;

if (z == 12) {

 fail();

 } else {

 printf(“ - ");

}

•  Read in 5 (concrete
execution)

•  Constraints

•  λ * 2 == 12

•  λ * 2 != 12

•  Termination results in a
concrete value (test cases)

HYBRID FUZZING

•  Combination of techniques

•  Fuzzing – explore trivial input spaces

•  Concolic – solve complex branches

•  Forking when needed

•  Proven to work by Driller

•  6 new crashing inputs not found by using individually

HYBRID FUZZING

HYBRID FUZZING - PROBLEMS

•  Slow to generate constraints

•  No support for complete system calls

•  Bad at generating test cases

QYSM

•  Remove IR translation layer to reduce overhead (minimal symbolic emulation)

•  Concrete execution to model external environment – support to system calls
(models minimal system calls)

 mprotect(addr, sym_size,PROT_R)

 mprotect(addr, conc_size,PROT_R)

•  Smart constraint solving

•  Incomplete constraints (efficiency) – Unrelated concrete elimination

•  Only solve constraint associated to branch

•  Overly constrained path (solve portion)

QSYM - INCOMPLETE CONSTRAINTS

QSYM – OVERLY CONSTRAINED PATHS

QSYM

QSYM – BASIC BLOCK PRUNING

•  Detect repetitive basic blocks and prunes them for symbolic execution with
subset of constraints

•  Counts frequency of basic blocks and at runtime selects the repetitive blocks
to prune

•  If a basic block is executed frequently then it will stop generating constraints
for it

•  Over-pruning basic block – miss solvable path

•  Grouping multiple executions

•  Context sensitivity – If block are in different branches

IMPLEMENTATION

•  Intel Pin used for emulation

•  API that allows context information such as register contents to be passed to the
injected code as parameters

QSYM – REAL WORLD SCALABLE

•  Apply QSYM to programs large in size and previously fuzzed

•  13 new unknown bugs found in software

•  Google’s OSS-Fuzz generated 10 trillion test inputs a day for a few months to fuzz
these applications

•  QSYM ran them for three hours using a single workstation

•  Driller – Hybrid Fuzzer (test cases)

COMPARISON

•  OSS – Fuzz (2 years)

•  QSYM generates test case to reach this bug

LIMITATIONS

•  Specialized to test on x86 architecture

•  Other executors using IR can be ran on other architectures

CONCLUSION

•  QSYM is a hybrid fuzzing model that is scalable to real world applications

•  Outperforms current models for bug finding

