QSYM : A PRACTICAL CONCOLIC
EXECUTION ENGINE

TAILORED FOR HYBRID FUZZING

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang and Taesoo Kim,

FINDING SECURITY BUGS

Fuzzing

Automated test to monitor exceptions (crashes & memory leaks)

Pro: general inputs (loose branch condition: x<1000)

Con: specific inputs

FINDING SECURITY BUGS

Concolic Execution - concrete execution drive the symbolic execution through
specific path

Symbolic Execution
Execution through all paths
Concrete Execution

Executing with values

Pro: specific inputs (narrow conditions: x == Oxfdsgs)

Con: path explosion - feasible paths in a program grows exponentially with an
increase in program size

FINDING SECURITY BUGS — CONCOLIC

TESTING

y = read();

z=y*2;

if (z==12){
fail();

} else {

printf(“ - ");

Read in 5 (concrete
execution)

Constraints
A *2==12
A *21=12

Termination results in a
concrete value (test cases)

HYBRID FUZZING

Combination of techniques
Fuzzing — explore trivial input spaces

Concolic — solve complex branches

Forking when needed

Proven to work by Driller

6 new crashing inputs not found by using individually

HYBRID FUZZING

s | push ebp

Program

mov ebp, esp

t0 = GET:132(ebp)
tl = GET:132(esp)

Basic block

Fuzzing
e

— —
- . P
--__—-—-———————_

Coverage »

-

t2 = Sub32(t1,0x00000004)

Intermediate Representations

-
-

State forking

lAl
&& A[2] == A

Constraints

N1 '

) [,

Test cases
-

HYBRID FUZZING - PROBLEMS

Slow to generate constraints

No support for complete system calls

Bad at generating test cases

QYSM

Remove IR translation layer to reduce overhead (minimal symbolic emulation)

Concrete execution to model external environment — support to system calls
(models minimal system calls)

mprotect(addr, sym_size,PROT_R)
mprotect(addr, conc_size,PROT_R)
Smart constraint solving
Incomplete constraints (efficiency) — Unrelated concrete elimination
Only solve constraint associated to branch

Overly constrained path (solve portion)

QSYM - INCOMPLETE CONSTRAINTS

X = int(input()) Constraints for x (Incomplete)
y = int(input()) &&y *y==1337 * 1337

Path constraints
Incomplete constraints 1
mprotect(addr, x, PROT_R)

y *y==1337 * 1337

ify *y==1337 *1337: Branch dependent constraints

bug() l

x = Use concrete value
— y = 1337

QSYM — OVERLY CONSTRAINED PATHS

type = int(input())

if type == TYPE1L:
parse TYPEL()

if type == TYPE2:
parse_TYPE2()

type = int(input())
A i A
type == TYPE1 type != TYPE1
v
«. +longtime
\d
type == TYPE2

v

Unsatisfiable: No test case

QSYM

1. Instruction-level execution

P | push ebp

mov ebp, esp
Program

Basic block

Coverage

Fuzzing

“_-—_--—————————-‘

» | A[0] == A’

&& A[1] == A’
&& A[2) == ‘N’

Constraints

- -

11 [
) [

Test cases

QSYM — BASIC BLOCK PRUNING

Detect repetitive basic blocks and prunes them for symbolic execution with
subset of constraints

Counts frequency of basic blocks and at runtime selects the repetitive blocks
to prune

If a basic block is executed frequently then it will stop generating constraints
for it

Over-pruning basic block — miss solvable path

Grouping multiple executions

Context sensitivity — If block are in different branches

IMPLEMENTATION

Component Lines of code
Concolic execution core 12,528 LoC of C++
Expression generation 1.913 LoC of C++
System call abstraction 1.577 LoC of C++
Hybnd fuzzing 565 LoC of Python

Intel Pin used for emulation

API that allows context information such as register contents to be passed to the
injected code as parameters

QSYM — REAL WORLD SCALABLE

Apply QSYM to programs large in size and previously fuzzed

| 3 new unknown bugs found in software

Google’s OSS-Fuzz generated |0 trillion test inputs a day for a few months to fuzz
these applications

QSYM ran them for three hours using a single workstation

Driller — Hybrid Fuzzer (test cases)

COMPARISON

! $libavcodec/x86/mpegvideodsp.c:58 (fimpeg 3.4)

: 1f (((ox * (ox + dxw))

3 (ox * (ox + dxh))

4 (ox * (ox + dxw - dxh))

S (oy * (oy + dyw))

6 (oy * (oy + dyh))

] (oy * (oy + dyw + dyh))) >> (16 + shife)

5 (dxx | dxy | dyx | dyy) & 15

v (need_enmu &4 (Ch > MAX_H || stride > MAX_STRIDE)))
w { ... returmn; }

1" the bug 1s here

* OSS - Fuzz (2 years)

* QSYM generates test case to reach this bug

LIMITATIONS

Specialized to test on x86 architecture

Other executors using IR can be ran on other architectures

CONCLUSION

QSYM is a hybrid fuzzing model that is scalable to real world applications

Outperforms current models for bug finding

