
MOBICEAL: TOWARDS SECURE AND
PRACTICAL PLAUSIBLY DENIABLE

ENCRYPTION ON MOBILE DEVICES

Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-
Tao Zhu, Yangguang Tian, Zhan Wang and Albert Ching

OVERVIEW

1.  What is Plausibly Deniable Encryption (PDE)?

2.  PDE on Mobile Devices

3.  Model and Assumptions

4.  Design

5.  Evaluation

6.  Conclusion

WHAT IS PDE?

WHAT IS PLAUSIBLY DENIABLE
ENCRYPTION?

•  Traditional encryption (full disk encryption, or FDE) is ineffective if user can
be coerced into disclosing decryption key

•  Allows for user to plausibly deny the existence of sensitive material on the
encrypted disk

•  Data can be decrypted in two or more different ways – only one being the actual
protected data

•  The user can reveal the public volume decryption key under coercion

HIDDEN VOLUMES

•  The PDE tool encrypts two volumes of data – the hidden
volume containing the actual data, and a public decoy volume

•  Public volume placed on entire disk, hidden volume placed at a
defined offset from the end of the disk

•  Works for one-time access from an adversary

•  Multiple disk snapshots taken at different points in time by an
adversary can detect presence of hidden volume

STEGANOGRAPHIC FILE SYSTEMS

•  Hides sensitive data among regular public files

•  Done by either introducing many cover files, or hiding the
data in dummy file blocks

•  Main challenge is to avoid overwriting hidden data

•  Requires a large amount of redundancy and disk space

PDE ON MOBILE DEVICES

PDE ON MOBILE DEVICES

•  Existing PDE solutions on mobile devices hide encrypted data in
randomness on disk

•  An adversary can detect changes to this randomness over multiple
snapshots

•  Reboot is required for access to hidden mode – may not be feasible in
situations where sensitive information needs to be captured quickly

•  PDE solutions to multi-snapshot adversaries not suitable
for mobile devices

PDE ON MOBILE DEVICES

•  HIVE and DataLair, two desktop PDE solutions, require "write-only
oblivious RAM" (ORAM) to prevent data differentiation over multiple
snapshots

•  HIVE and DataLair assume that the adversary can obtain a snapshot
after every write to the disk

•  This has poor I/O performance, and not suitable for mobile devices

•  MobiCeal assumes "on-event" adversary that can obtain multiple
snapshots after the user is prepared, making it more lightweight and
suitable to mobile devices

PDE ON MOBILE DEVICES

•  Unlike HIVE and DEFY (another PDE tool), MobiCeal is not vulnerable
to side-channel attacks. Both HIVE and DEFY do not sufficiently isolate
hidden data from public data

•  DEFY is designed for mobile devices and to prevent multiple-snapshot
attacks, however it relies on properties of the flash filesystem YAFFS,
limiting device compatibility

•  Other tools do not provide enough detail on correct usage, which may
lead to information exposure if used incorrectly

•  Some tools require a reboot to switch between public and hidden
mode, which is time consuming and may not be feasible in all situations

MOBICEAL

•  MobiCeal provides plausible deniability against multiple-snapshot
adversaries

•  Not vulnerable to side channel attacks

•  Designed to be implemented on mainstream mobile devices

•  Built into the block layer of the Linux kernel, allowing deployment of
any block filesystems

•  Lightweight "dummy write" mechanism, with relatively low overhead

•  Fast switching between public and hidden mode

MODEL AND ASSUMPTIONS

ADVERSARIAL MODEL & ASSUMPTIONS

•  Assumes a computationally bounded (i.e. reasonable computation power)
adversary that takes snapshots of the device at different points in time
(entering and leaving a country or secured facility)

•  Adversary is allowed full knowledge of MobiCeal's design

•  Coercion of the device owner is allowed

•  Does not know encryption key or password of the hidden volume

•  Can obtain root privilege and access internal and external storage during each
snapshot

ADVERSARIAL MODEL & ASSUMPTIONS

•  Adversary assumed to not be able to capture the device owner when the
hidden volume is being worked with

•  Assumed that coercion will stop when the device owner discloses the decoy
password/encryption key

•  Assumed that MobiCeal is merged with the Android code stream, so that its
availability is not suspicious

•  The OS, kernel, bootloader, firmware, and baseband OS, and other apps are not
compromised

DESIGN

MOBICEAL SYSTEM ARCHITECTURE

DESIGN OVERVIEW

•  Uses a dummy write approach, allowing for similar benefits to ORAM
approaches with less overhead

•  When writing public data, MobiCeal performs some additional random writes
to the dummy volume (following an expontential distribution)

•  Comparision between snapshots by an adversary will show changes, but the
use can attribute these to the dummy volume instead of the hidden volume

•  The dummy data is created using the same encryption algorithm as the hidden
data with random input and keys

DESIGN OVERVIEW

•  The public mode has no knowledge of the hidden volume, so a way is needed
to ensure that public data does not overwrite hidden data

•  The hidden-volume technique resolves this by placing the hidden volume at the
end of the disk

•  This is only suitable for file systems that write sequentially on the disk, and
overwrites are still possible when the disk is under heavy load

•  Borrows "global bitmap" from steganographic file system, storing it in the block
layer. This keeps track of blocks being used by the public, dummy, and hidden
data, marking blocks as allocated and preventing overwrite by public/dummy
data

A BASIC MOBICEAL SCHEME

•  Three types of virtual volumes:

1.  Public volume – used for operations not involving sensitive operation,
provides encryption without deniability. This is accessed with the decoy
key, computed with the decoy password

2.  Hidden volume – used when storing sensitive data, provides deniability.
Accessed with hidden password at boot

3.  Dummy volume – stores data created by dummy writes, obfuscates hidden
volume. Adversary cannot differentiate between this and a hidden volume

A BASIC MOBICEAL SCHEME

•  Dummy write mechanism is used to
obfuscate writes to the hidden volume

•  Dummy write will be performed with a
certain probability when blocks
are allocated to the public volume

•  Dummy writes are only performed when
the condition is met, in order to prevent
adversary from determining dummy write
pattern

Condition:

 rand <= stored_rand mod x

•  x is a positive integer constant,

•  stored_rand is a random number that
is periodically updated (PRNG or noise)

•  rand is an integer chosen uniformly from
1 to 2*x (ensuring probability of dummy
write is always under 50%)

A BASIC MOBICEAL SCHEME

•  When performing a dummy write,
m free blocks are allocated and
marked as such in the global bitmap

•  Blocks are filled with random noise,
which should be indistinguishable
from encrypted data

m = floor(m')

m' = -(ln(1-f))/λ

•  f is a random number in (0,1)

•  λis the rate parameter, making m' follow
exponential distribution

•  The mean value of m'/λ is 1, meaning if 1 is
chosen as λ, the dummy write will be
allocated 1 free block on average

•  An exponential distribution means large variance,
good for deniability

A BASIC MOBICEAL SCHEME

•  A common allocation strategy is sequential block allocation, where data blocks are
allocated to volumes sequentially from the disk, example:

 Dh || Dv || Dh || Dh || Dh || Dh || Dh || Dh || Dh || Dv

•  Where Dh are blocks written to the hidden volume, and Dv are writes to the public
volume

•  From this example, an adversary can observe that seven blocks are allocated
between the two allocations to the public volume. The user can claim these are
allocations to the dummy volume, but dummy writes are limited, and the adversary
may notice that the allocations to the dummy block exceeds this limit

•  To avoid this issue, MobiCeal uses random block allocation, eliminating large
sequences of blocks that are apparently written to the dummy volume

MOBICEAL STORAGE LAYOUT

SIDE CHANNEL ATTACKS

•  MobiCeal isolates the hidden volume from the public volume, preventing
hidden volume information from being recorded in the public volume

•  The hidden password is entered in public mode, the password is not recorded,
assuming other parts of the system are not compromised

•  The partitions containing /devlog and /cache are unmounted immediately after
the hidden password is verified, and RAM disks are mounted in their place,
preventing data leakage to the public volume. The hidden volume is then
decrypted, and mounted as the userdata partition

•  Fast switching between modes is only supported from public mode to hidden
mode, ensuring that anything stored in memory from hidden mode is cleared
from the RAM on reboot

EVALUATION

MOBICEAL PERFORMANCE

CONCLUSION

CONCLUSION

•  MobiCeal is a practical PDE solution for mobile devices

•  First block-layer PDE scheme that is resistant to multi-snapshot adversaries

•  File system friendly and supports fast switching

•  Prototype implemented on an LG Nexus 4 and tested on Huawei Nexus 6P

•  Significantly lower overhead relative to other multi-snapshot defensive PDE
systems

