CLKSCREW

Exposing the Perils of Security-Oblivious Energy Management

Adrian Tang, Simha Sethumadhavan and Salvatore Stolfo USENIX Security 2017

> Presented by Alokparna Bandyopadhyay Fall 2018, Wayne State University

- Introduction
- DVFS
- The CLKSCREW Attack
- Attacking the ARM Trustzone
- Discussion
- Conclusion

Introduction

- DVFS
- The CLKSCREW Attack
- Attacking the ARM Trustzone
- Discussion
- Conclusion

Introduction

- Energy management is crucial for modern devices
 - Reduce cost, increase battery life, enhance portability
 - Requires hardware-software interoperability to minimize energy consumption and maximize performance
- Security of modern systems is at a risk due to the lack of secure energy management
 - Security vulnerabilities attract malicious attackers

Introduction

- Attackers exploit *software interfaces* to Energy Management hardware
 - Does not require physical access to target devices
 - Does not need separate equipment
 - Bypass hardware security defense mechanisms

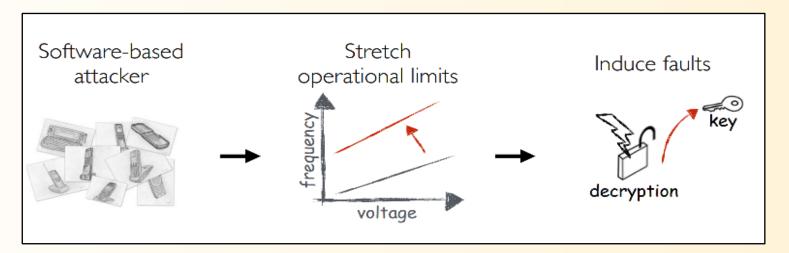


Image source: https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang

Introducing the CLKSCREW Attack

- New type of software attack that exploits energy management
- Practical security attack which subverts the hardware-enforced isolation in ARM Trustzone
 - Extract the secret AES keys embedded within Trustzone
 - Load self-signed code into Trustzone
- Impacts hundreds of millions of devices which use the ARM Trustzone for secure computing
- Lessons for future energy management designs to be security-conscious

- Introduction
- DVFS
- The CLKSCREW Attack
- Attacking the ARM Trustzone
- Discussion
- Conclusion

DVFS – Dynamic Voltage & Frequency Scaling

- Energy consumption ≈ Power x Time
 - Power ∝ Frequency x Voltage
- DVFS : an energy management tool
 - Trades off between processing speed and energy savings
 - Focuses on efficiently optimizing both frequency and voltage based on runtime task demands
 - Requires hardware and software components across layers in the system stack
 - Hardware support : Voltage regulator & Frequency Regulator
 - Software support : Vendor specific regulator driver & OS-level power governor
 - Operating frequency and voltage can be configured via memory-mapped registers from software

Hardware & Software Support for DVFS

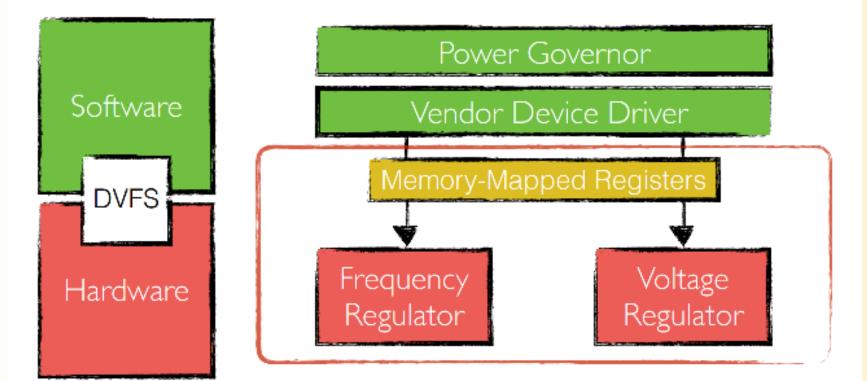
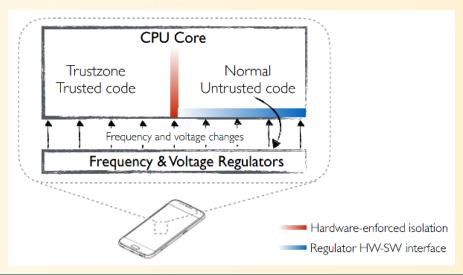



Image source: https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang

DVFS Security Vulnerability

- Hardware regulators do not impose any kind of safeguard limits to frequency/voltage changes
 - unfettered access to hardware regulators increases the risk of over exceeding frequency (*overclocking*) and under supplying voltage (*undervolting*) → Timing Fault!
- DVFS operates across the security boundaries of the ARM Trustzone
 - Remains unaware of the hardware enforced Trustzone isolation

- Introduction
- DVFS
- The CLKSCREW Attack
- Attacking the ARM Trustzone
- Discussion
- Conclusion

The CLKSCREW Attack

Objective

- Attack the Trustzone code execution using software-only control of the regulators
 - Take advantage of the DVFS security vulnerability
 - Stretch frequency and voltage beyond the operating limits of digital circuits to create erroneous computation → Timing Attack

Implementation platform

 CLKSCREW is implemented on a commodity ARMv7 phone, Nexus 6 to demonstrate the practicality of the security attack

Timing Attack

 For the overall circuit to propagate input → output, the minimum required clock cycle period, T_{clk}, is bounded by the following timing constraint:

 $T_{Clk} \ge T_{FF} + T_{max_path} + T_{setup} + K$

- Violation of timing constraint:
 - Over-raising the frequency reduces the timing constraint Tclk less time for data to propagate
 - Under-supplying the voltage increases the overall circuit propagation time, increases Tmax_path
- Due to timing constraint violation during two consecutive clock signals, the output from the source flip-flop fails to latch properly in time as the input at the destination flip-flop, which continues to operate with stale data

CLKSCREW Challenges

- Regulator operating limits
 - Overclocking or undervolting attacks require the hardware to be configured far beyond its vendorsuggested operating range
- Self-containment within same device
 - Attack should not affect the execution of the attacking code which resides in the same device as the victim code
- Noisy complex OS environment with interrupts
 - Fault should be injected into the target code without affecting the nontargeted code
- Fault timing needs to be fine-tuned and precise
- Fine-grained timing resolution
 - Fault needs to be transient enough to occur during the intended region of victim code execution

CLKSCREW Solutions

- Regulator operating limits
 - No safeguard limits in the hardware regulators of DVFS to restrict the range of frequencies and voltages that can be configured
 - Reducing the operating voltage lowers the minimum required frequency needed to induce faults
- Self-containment within same device
 - Cores have different frequency regulators
 - Custom kernel driver is created to launch separate threads for the attack and victim code and to pin each of them to separate cores
 - Pinning the attack and victim code in separate cores allows each of them to execute in different frequency domains

CLKSCREW Solutions

- Noisy complex OS environment with interrupts
 - Disable OS interrupts during the entire victim code execution to prevent context switching
- Fault timing needs to be fine-tuned and precise
- Fine-grained timing resolution
 - High-precision timing loops in attack architecture
 - Execution timing of Trustzone code can be profiled with hardware cycle counters that are accessible outside of Trustzone

CLKSCREW Attack Steps

- Goal is to induce a fault in a subset of an entire victim thread execution
- Attack Steps:
 - 1. Clearing residual states
 - Before attacking the victim code it must be ensured that the caches do not have any residual data from non-victim code before each fault injection attempt
 - 2. Profiling for a timing anchor
 - Victim code execution is typically a subset of the entire victim thread execution
 - Need to identify a timing anchor a consistent point of execution just before the target code to be faulted

CLKSCREW Attack Steps

- Attack Steps (cont.):
 - 3. Pre-fault timing delay
 - Need to finetune the exact delivery timing of the fault
 - Configure the attack thread to spin-loop with a predetermined number of no-op operation loops Fpdelay before inducing the actual fault
 - 4. Delivering the fault
 - Attack thread raises the frequency of the victim core from Fvolt to Ffreq_hi, keep that frequency for Fdur loops and then restore the frequency to Ffreq_lo

Parameter	Description
F _{volt}	Base operating voltage
F _{pdelay}	Number of loops to delay/wait before the fault
F _{freq_hi}	Target value to raise the frequency to for the fault
F _{freq_lo}	Base value to raise the frequency from for the fault
F _{dur}	Duration of the fault in terms of number of loops

- Introduction
- DVFS
- The CLKSCREW Attack
- Attacking the ARM Trustzone
- Discussion
- Conclusion

Attacking the ARM Trustzone

- 1. Confidentiality Attack
 - Infer secret AES key stored within Trustzone
- 2. Integrity Attack
 - Load self-signed app into Trustzone

Confidentiality Attack

- AES Keys stored within Trustzone can be inferred from outside Trustzone by lower privileged code
- Attacker code influences the computation of higher-privileged code using the energy management timing attack
- Induce a fault during the AES encryption procedure to generate faulty ciphertext
- Execute a differential fault analysis between the original and faulty ciphertexts → Infer the AES encryption key!

Integrity Attack

- RSA Primary public-key cryptography used for authenticating the loading of firmware images into the isolated execution environment of ARM Trustzone
- Vendor specific firmware are subject to regular updates
 - Update files consist of the updated code, a signature protecting the hash of the code, and a certificate chain
 - Trusted Execution Environment (TEE) authenticates the certificate chain and verifies the integrity of the code updates before loading these signed code updates
- CLKSCREW loads self-signed apps into the Trustzone violating firmware integrity

- Introduction
- DVFS
- The CLKSCREW Attack
- Attacking the ARM Trustzone
- Discussion
- Conclusion

Discussion

Attack Applicability to Other Platforms

- Energy management mechanisms in the industry is trending towards finegrained, heterogeneous designs that separate voltage/frequency domains for the cores
- Security vulnerabilities in energy management mechanisms of Intel devices, ARMv8 devices and Cloud computing providers like Amazon AWS, etc. need to be explored

Discussion

- Hardware-Level Defences
 - Operating limits in hardware
 - Hard limits can be enforced within the regulators in the form of additional limit-checking logic
 - Separate cross-boundary regulators
 - Maintain different power domains across security boundaries when the isolated environment is active
- Software-Level Defences
 - Randomization of the runtime execution of the code to be protected
 - Code execution redundancy and checks
 - Compiling code with checksum integrity verification
 - Executing sensitive code multiple times

- Introduction
- DVFS
- The CLKSCREW Attack
- Attacking the ARM Trustzone
- Discussion
- Conclusion

Conclusion

- CLKSCREW exposes the perils of security oblivious energy management systems
- Not a hardware or software bug
- Fundamental design flaw in energy management mechanisms
- Does not need physical access to the target devices
- Exploits the energy management software interfaces
- Future energy management designs must take security into consideration

THANK YOU

