IOTFUZZER: Discovering Memory Corruptions in
loT Through App-based Fuzzing

Jiongyi Chen , Wenrui Diao, Qingchuan Zhao , Chaoshun Zuo, Zhigiang Lin,
XiaoFeng Wang , Wing Cheong Lau , Menghan Sun, Ronghai Yang, Kehuan Zhang

Presented by Sezana Fahmida

B

Outline

e |Introduction

Background

Challenges

Scope & Assumptions

Design

Implementation & Evaluation

Discussion

Conclusion

D 2

Introduction

Internet of Things (loT) dominating the global market

loT devices is projected to reach 20.4 billion in 2020, forming a global market
valued S3 trillion

e smart plugs, smart door locks, smart bulbs etc
2014 to 2016, 90+ independent loT attack incidents
Targets implementation flaws within a device’s firmware

B

Background

D 2

Typical loT architecture

=3

—
L3
\

7/
/

@),
l‘l’

b
r
i ;\
o [+]
III = 2y5 \
) = | é: |
L) ‘-._ — c ;-"'
] ©®] % /

0 @

p

Fig. 1: Typical smart home communication architecture

D 2

Typical loT architecture

* Devices equipped with sensors
* Wireless Connection
* |oT app to control devices provided by vendors

 Communication mode between app and device can be
* Direct (wifi/Bluetooth)
* Delegated (via a cloud server)

B

Obstacles in Firmware Analysis

* Firmware: Special software providing

e System control
* Status monitoring
e Data collection

* Highly customized to fit device architecture

* Main Challenges
* Firmware Acquisition
* Firmware Unpacking
* Executable Analysis

B

Motivation

 Skip direct firmware analysis by alternative approach
* |Intuition: Leverage loT apps to find vulnerabilities

e Advantages:
* No need for firmware analysis
* Avoids reverse engineering binary executables
* Feasable: Most |oT devices use app

* Design goal: generate protocol-guided and cryptographic consistent fuzzing
messages from loT apps to find memory corruption

\

Challenges in loTFuzzer Design

* Mutating fields in networking messages
* Device specific protocols are used

* Handling encrypted messages
 Communication between app and device encrypted
* Code obfuscation
* Increases complexities

* Monitoring crashes
e Cannot locally monitor the running process in the system

Solutions

* Mutating fields in networking messages
* Mutate data at the source

* Handling encrypted messages
* Reusing cryptographic functions at runtime

* Monitoring crashes
* Use heartbeat mechanism

Scope & Assumption

loT devices with apps

Communication channel: Wifi

Direct Connection, No cloud server

Android platform

D 2

loTFuzzer Design

* Two phases

* App analysis
e Ul analysis
e Data Flow analysis

* Fuzzing
* Runtime mutation
* Response Monitoring

D 2

App Analysis

Protocol

Ul Analysis == Taint Tracking Fields &

Functions

o o o ——— - — — —

Picture taken from author’s slides

App analysis

e Ul analysis
 Static analysis of apk
* determine the Ul elements that eventually lead to the message delivery

* from the target network communication APIs construct the backward code
paths to Ul event handlers

e Activity transition graphs: To find the order of events

B

App analysis

e Data flow analysis

* to recognize the protocol fields and record the functions that take these
arguments

* Dynamic taint tracking
* Taint source: string, system API, user input
* Taint sink: networking APl and encryption functions

B

Fuzzing

L

Input: APK Files Output: Alerts
e .
i Y T ! / -
I] Data-flow P _ I == 7
i Ul Analysis —|r— s | iProblng Message! . ; E@
| ! | ! f — WY |
\App Analysis ! = | =
— BB
- : I o /
Fuzzing Scheduling & Policyj—'—b i i Response i ' :__ S '
| __ Dynamic __| | Response _| i \f
API Hooking Monitoring E—

Fig. 2: Overview of [OTFUZZER

Fuzzing

* Runtime Mutation
Dynamic Function Hooking
Intercept function calls and mutate the fuction arguments
Fuzzing Scheduling
Only mutate a subset of function parameters
Fuzzing policy
* Changing the lengths of strings
* Changing the integer, double or float values
* Changing the types or provide empty values

Fuzzing

* Response monitoring

* Device status inferred from loT device responses
* Expected Response
* Unexpected Response — Error is triggered
* No Response - Error may be triggered
* Disconnected —System crash

B

Fuzzing

e TCP-based connection: look for disconnection

 UDP-based connection: send heart-beat message from app

D 2

Implementation

* 17 representative loT devices from different categories

TABLE [: Summary of loT Devices under Testing

Device Type Vendor Device Model Firmware Official Mobile App (Android”) Protocol and Format
Version (Encrypted: Yes/No)

I’ Camera D-Link DCS-5010L 1.13 com.dlink.mydlinkmyhome HTTP, K-V Pairs (N)
Smart Bulb TP-Link LEB100 1.1.2 com.tplink.kasa_android UDF, IS0ON (Y)
KONEE KE-Light 1.1.0 com. kankunitus.smartplugcronus UDF, Sitring (Y)

Belkin Wemo Switch 2.00 com.belkin.wemoandroid HTTP, XML (N)

Smart Plug TP-Link HSTID vI_I51016 com.tplink.kasa_ android TCPE JSON (YY)
D-Link DSP-W2I15 1.02 com.dlink.mydlinkmyhome HNAF, XML (N)

Printer Brother HL-L5100DN Ver. E com.brother . mfc.brprint LPD & HTTE URI (N)
Western Digital My Passport Pro 1.01.08 com.wdc.wdZgo HTTF, JSON (N)

NAS) My Cloud 221.128 com.wdc.wdZgo HTTFE. JSON (N)
QONAP T5-212P 4272 COMm. gnap.gmanager HTTF, K-V Pairs (N)

loT Hub Philips Hue Bridge 01036659 com.philips.lighting.hue HTTP, JISON (N)
NETGEAR N300 1.0.0.34 com.dragonflow HTTE. XML (N)

Home Router Linksys ET200 2.07 com. cisco.connect.cloud HNAP, XML (N)
Xiaomi Niaomi Router 2.19.32 com. xiaomi.router HTTF, E-V Pairs (N)

Story Teller Xiaomi C-1 1.2.4 89 com. xiaomi.smarthome UDPE, JSON (Y)
Extension Socket KONKE Mini-K Socket sva.l.4 com. kankunitus.smartplugcronus UDP, String (Y)
Humidifier POVOS PW103 v2.0.1 com.benteng.smartplugcronus UDP, String (Y)

Remarks: All IoT apps mentioned in this table could be obtained from Google Play.

Evaluation

15 serious vulnerabilities (memory corruptions) in 9 devices.

TABLE II: Summary of Discovered Vulnerabilities

Device Vulnerability Type # of Issues Remotely Exploitable?
Belkin WeMo (Switch) Null Pointer Dereference 1 No

TP-Link H5110 (Plug) Null Pointer Dereference 3 No

D-Link DSP-W215 (Plug) Buffer Overflow (Stack-based) 4 Yes

WD My Cloud (NAS) Buffer Overflow (Stack-based) 1 Yes

ONAP TS-212P (NAS) Buffer Overflow (Heap-based) 2 Yes

Brother HL-L5100DN (Printer) Unknown Crash 1 Not determined
Philips Hue Bridge (Hub) Unknown Crash 1 Not determined
WD My Passport Pro (NAS) Unknown Crash 1 Not determined

1

POVOS PW 103 (Humidifier)

Unknown Crash

Mot determined

Evaluation

Wulnerability-led Crashe

Reported Crashes

]

a0

T e oo

SaYSEI) JO #

10b - N BN || e e

__..,E.Ew
pini- socket
w -1

mi Route!
£1200

N300

Hue gridge
.am..ww.wﬂ

py Cloud

L451000M
psp-W213

\Wemo switch

Aot
LB100

0Cs-5010-

Fig. 5: Fuzzing Accuracy

Discussion

* Provides high specification coverage, low code coverage
* Does not consider cloud relay
* cannot generate memory corruption types and root causes directly

* final vulnerability confirmation always requires some kinds of manual
efforts.

* False positives & negatives

B

Conclusion

* |oTFuzzer- first loT fuzzing framework

* Protocol guided fuzzing achieved without protocol specifications

D 2

THANK YOU!!!

D 2

