
IOTFUZZER: Discovering Memory Corruptions in
IoT Through App-based Fuzzing

Jiongyi Chen , Wenrui Diao , Qingchuan Zhao , Chaoshun Zuo , Zhiqiang Lin,
XiaoFeng Wang , Wing Cheong Lau , Menghan Sun , Ronghai Yang, Kehuan Zhang

Presented by Sezana Fahmida

Outline
• Introduction

• Background

• Challenges

• Scope & Assumptions

• Design

• Implementation & Evaluation

• Discussion

• Conclusion

Introduction

• Internet of Things (IoT) dominating the global market

• IoT devices is projected to reach 20.4 billion in 2020, forming a global market
valued $3 trillion

• smart plugs, smart door locks, smart bulbs etc

• 2014 to 2016, 90+ independent IoT attack incidents

• Targets implementation flaws within a device’s firmware

Background

Typical IoT architecture

Typical IoT architecture
• Devices equipped with sensors

• Wireless Connection

• IoT app to control devices provided by vendors

• Communication mode between app and device can be
• Direct (wifi/Bluetooth)

• Delegated (via a cloud server)

Obstacles in Firmware Analysis
• Firmware: Special software providing

• System control

• Status monitoring

• Data collection

• Highly customized to fit device architecture

• Main Challenges
• Firmware Acquisition

• Firmware Unpacking

• Executable Analysis

Motivation

• Skip direct firmware analysis by alternative approach

• Intuition: Leverage IoT apps to find vulnerabilities

• Advantages:
• No need for firmware analysis

• Avoids reverse engineering binary executables

• Feasable: Most IoT devices use app

• Design goal: generate protocol-guided and cryptographic consistent fuzzing
messages from IoT apps to find memory corruption

Challenges in IoTFuzzer Design

• Mutating fields in networking messages
• Device specific protocols are used

• Handling encrypted messages
• Communication between app and device encrypted

• Code obfuscation

• Increases complexities

• Monitoring crashes
• Cannot locally monitor the running process in the system

Solutions

• Mutating fields in networking messages
• Mutate data at the source

• Handling encrypted messages
• Reusing cryptographic functions at runtime

• Monitoring crashes
• Use heartbeat mechanism

Scope & Assumption

• IoT devices with apps

• Communication channel: Wifi

• Direct Connection , No cloud server

• Android platform

IoTFuzzer Design

• Two phases

• App analysis
• UI analysis

• Data Flow analysis

• Fuzzing
• Runtime mutation

• Response Monitoring

App Analysis

Picture taken from author’s slides

App analysis

• UI analysis
• Static analysis of apk

• determine the UI elements that eventually lead to the message delivery

• from the target network communication APIs construct the backward code
paths to UI event handlers

• Activity transition graphs: To find the order of events

App analysis

• Data flow analysis
• to recognize the protocol fields and record the functions that take these

arguments

• Dynamic taint tracking

• Taint source: string, system API, user input

• Taint sink: networking API and encryption functions

Fuzzing

Fuzzing

• Runtime Mutation
• Dynamic Function Hooking

• Intercept function calls and mutate the fuction arguments

• Fuzzing Scheduling

• Only mutate a subset of function parameters

• Fuzzing policy

• Changing the lengths of strings

• Changing the integer, double or float values

• Changing the types or provide empty values

Fuzzing

• Response monitoring

• Device status inferred from IoT device responses

• Expected Response

• Unexpected Response – Error is triggered

• No Response - Error may be triggered

• Disconnected –System crash

Fuzzing

• TCP-based connection: look for disconnection

• UDP-based connection: send heart-beat message from app

Implementation

• 17 representative IoT devices from different categories

Evaluation

• 15 serious vulnerabilities (memory corruptions) in 9 devices.

Evaluation

Discussion

• Provides high specification coverage, low code coverage

• Does not consider cloud relay

• cannot generate memory corruption types and root causes directly

• final vulnerability confirmation always requires some kinds of manual
efforts.

• False positives & negatives

Conclusion

• IoTFuzzer- first IoT fuzzing framework

• Protocol guided fuzzing achieved without protocol specifications

THANK YOU!!!

