IOTFUZZER: Discovering Memory Corruptions in IoT Through App-based Fuzzing

Jiongyi Chen , Wenrui Diao , Qingchuan Zhao , Chaoshun Zuo , Zhiqiang Lin, XiaoFeng Wang , Wing Cheong Lau , Menghan Sun , Ronghai Yang, Kehuan Zhang

Presented by Sezana Fahmida

Outline

- Introduction
- Background
- Challenges
- Scope & Assumptions
- Design
- Implementation & Evaluation
- Discussion
- Conclusion

Introduction

- Internet of Things (IoT) dominating the global market
- IoT devices is projected to reach 20.4 billion in 2020, forming a global market valued \$3 trillion
- smart plugs, smart door locks, smart bulbs etc
- 2014 to 2016, 90+ independent IoT attack incidents
- Targets implementation flaws within a device's firmware

Background

Typical IoT architecture

Fig. 1: Typical smart home communication architecture

Typical IoT architecture

- Devices equipped with sensors
- Wireless Connection
- IoT app to control devices provided by vendors
- Communication mode between app and device can be
 - Direct (wifi/Bluetooth)
 - Delegated (via a cloud server)

Obstacles in Firmware Analysis

- Firmware: Special software providing
 - System control
 - Status monitoring
 - Data collection
- Highly customized to fit device architecture
- Main Challenges
 - Firmware Acquisition
 - Firmware Unpacking
 - Executable Analysis

Motivation

- Skip direct firmware analysis by alternative approach
- Intuition: Leverage IoT apps to find vulnerabilities
- Advantages:
 - No need for firmware analysis
 - Avoids reverse engineering binary executables
 - Feasable: Most IoT devices use app
- Design goal: generate protocol-guided and cryptographic consistent fuzzing messages from IoT apps to find memory corruption

Challenges in IoTFuzzer Design

- Mutating fields in networking messages
 - Device specific protocols are used
- Handling encrypted messages
 - Communication between app and device encrypted
 - Code obfuscation
 - Increases complexities
- Monitoring crashes
 - Cannot locally monitor the running process in the system

Solutions

- Mutating fields in networking messages
 - Mutate data at the source
- Handling encrypted messages
 - Reusing cryptographic functions at runtime
- Monitoring crashes
 - Use heartbeat mechanism

Scope & Assumption

- IoT devices with apps
- Communication channel: Wifi
- Direct Connection , No cloud server
- Android platform

IoTFuzzer Design

- Two phases
- App analysis
 - UI analysis
 - Data Flow analysis
- Fuzzing
 - Runtime mutation
 - Response Monitoring

App Analysis

Picture taken from author's slides

App analysis

- UI analysis
 - Static analysis of apk
 - determine the UI elements that eventually lead to the message delivery
 - from the target network communication APIs construct the backward code paths to UI event handlers
 - Activity transition graphs: To find the order of events

App analysis

- Data flow analysis
 - to recognize the protocol fields and record the functions that take these arguments
 - Dynamic taint tracking
 - Taint source: string, system API, user input
 - Taint sink: networking API and encryption functions

Fig. 2: Overview of IOTFUZZER

- Runtime Mutation
 - Dynamic Function Hooking
 - Intercept function calls and mutate the fuction arguments
 - Fuzzing Scheduling
 - Only mutate a subset of function parameters
 - Fuzzing policy
 - Changing the lengths of strings
 - Changing the integer, double or float values
 - Changing the types or provide empty values

- Response monitoring
- Device status inferred from IoT device responses
 - Expected Response
 - Unexpected Response Error is triggered
 - No Response Error may be triggered
 - Disconnected –System crash

- TCP-based connection: look for disconnection
- UDP-based connection: send heart-beat message from app

Implementation

17 representative IoT devices from different categories

Device Type	Vendor	Device Model	Firmware	Official Mobile App (Android ¹)	Protocol and Format
			Version		(Encrypted: Yes/No)
IP Camera	D-Link	DCS-5010L	1.13	com.dlink.mydlinkmyhome	HTTP, K-V Pairs (N)
Smart Bulb	TP-Link	LB100	1.1.2	com.tplink.kasa_android	UDP, JSON (Y)
Smart Duib	KONKE	KK-Light	1.1.0	com.kankunitus.smartplugcronus	UDP, String (Y)
	Belkin	Wemo Switch	2.00	com.belkin.wemoandroid	HTTP, XML (N)
Smart Plug	TP-Link	HS110	v1_151016	com.tplink.kasa_android	TCP, JSON (Y)
	D-Link	DSP-W215	1.02	com.dlink.mydlinkmyhome	HNAP, XML (N)
Printer	Brother	HL-L5100DN	Ver. E	com.brother.mfc.brprint	LPD & HTTP, URI (N)
	Western Digital	My Passport Pro	1.01.08	com.wdc.wd2go	HTTP, JSON (N)
NAS	western Digital	My Cloud	2.21.126	com.wdc.wd2go	HTTP, JSON (N)
	QNAP	TS-212P	4.2.2	com.qnap.qmanager	HTTP, K-V Pairs (N)
IoT Hub	Philips	Hue Bridge	01036659	com.philips.lighting.hue	HTTP, JSON (N)
	NETGEAR	N300	1.0.0.34	com.dragonflow	HTTP, XML (N)
Home Router	Linksys	E1200	2.0.7	com.cisco.connect.cloud	HNAP, XML (N)
	Xiaomi	Xiaomi Router	2.19.32	com.xiaomi.router	HTTP, K-V Pairs (N)
Story Teller	Xiaomi	C-1	1.2.4_89	com.xiaomi.smarthome	UDP, JSON (Y)
Extension Socket	KONKE	Mini-K Socket	sva.1.4	com.kankunitus.smartplugcronus	UDP, String (Y)
Humidifier	POVOS	PW103	v2.0.1	com.benteng.smartplugcronus	UDP, String (Y)

TABLE I: Summary of IoT Devices under Testing

Remarks: All IoT apps mentioned in this table could be obtained from Google Play.

Evaluation

• 15 serious vulnerabilities (memory corruptions) in 9 devices.

Device	Vulnerability Type	# of Issues	Remotely Exploitable?
Belkin WeMo (Switch)	Null Pointer Dereference	1	No
TP-Link HS110 (Plug)	Null Pointer Dereference	3	No
D-Link DSP-W215 (Plug)	Buffer Overflow (Stack-based)	4	Yes
WD My Cloud (NAS)	Buffer Overflow (Stack-based)	1	Yes
QNAP TS-212P (NAS)	Buffer Overflow (Heap-based)	2	Yes
Brother HL-L5100DN (Printer)	Unknown Crash	1	Not determined
Philips Hue Bridge (Hub)	Unknown Crash	1	Not determined
WD My Passport Pro (NAS)	Unknown Crash	1	Not determined
POVOS PW103 (Humidifier)	Unknown Crash	1	Not determined

Evaluation

Discussion

- Provides high specification coverage, low code coverage
- Does not consider cloud relay
- cannot generate memory corruption types and root causes directly
- final vulnerability confirmation always requires some kinds of manual efforts.
- False positives & negatives

Conclusion

- IoTFuzzer- first IoT fuzzing framework
- Protocol guided fuzzing achieved without protocol specifications

THANK YOU!!!

