DolphinAttack: Inaudible Voice Commands

GUOMING ZHANG, CHEN YAN, XIAOYU JI, TIANCHEN ZHANG , TAIMIN ZHANG, WENYUAN XU ZHEJIANG UNIVERSITY

Presented by: Oskars Dauksts November 14, 2018

Overview

Overview

Introduction

- Background and Threat model
- Attack Design
- Feasibility experiments across VCS
- Impact quantification
- Defenses
- Conclusion

Introduction

4

Introduction – Key Terms

- VCS Voice Controllable Systems
- SR Speech Recognition
 - Converts spoken words into machine-readable formats
 - ▶ Ex: Alexa, Siri, Google Now, etc.
- MEMS Microphones
 - Current standard of most mobile devices
- Amplitude Modulation
 - Technique that modulates voice commands into ultrasonic waves

Introduction

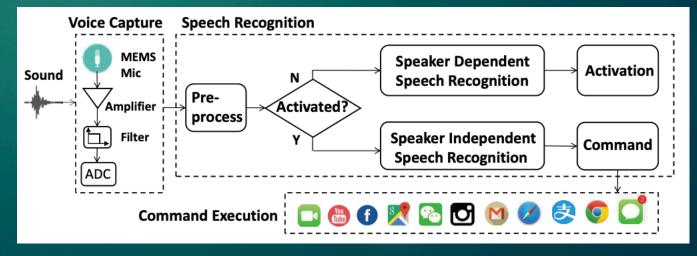
Can a voice attack be inaudible to human, while still being audible to the device?

Can injecting a sequence of inaudible voice commands lead to unnoticed security breaches?

Introduction

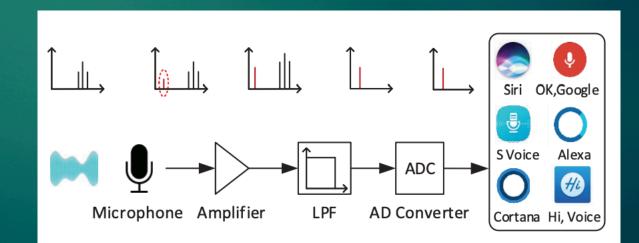
DolphinAttack approach

- Exploit by utilizing inaudible ultrasound channel (F > 20kHz), that can inject covert voice commands into state-of-art SR systems
- Leverages MEMS microphones
- Includes
 - Visiting malicious website drive-by-download
 - Spying Listening on speaker
 - ► Injecting fake information Sending messages, emcails
 - ► DOS Denial of Service
 - Concealing attacks Dimming screen, reducing volume


Background

Background - VCS

Voice capture


- Records an ambient voice, amplifies, filters and digitizes
- Pre-process, remove redundant frequencies
- Speech recognition
 - Activation 'Hey Siri'
 - Recognition
 - Speaker-dependent (Siri, Google Now)
 - Speaker-independent (Alexa)
- Command Execution
 - Launch application

Background - Microphone

Microphone/transducer

- Converts airborne acoustic waves into electrical signals
- Ideally filters out of range sounds (F < 20Hz 20kHz < F)</p>
 - Sometimes signals higher/lower are still recorder
- MEMS microphone
 - Dominates the market
 - Size
 - ► low-power consumption

Threat Model

Threat Model

- No target device access
 - Posses the knowledge of device characteristics
- No owner interaction
- ► Inaudible
 - ► *F* > 20*k*Hz
 - Upper bound of human hearing is 20kHz
 - Reason for some devices adopting sampling rate of under 44kHz
- Attacking equipment

Attack Design

Attack Design

Idea

- Generate baseband signal of voice commands both for activation and recognition (transmitter device)
- Modulate baseband signals (transmitter device)
- Demodulate at the VCS (receiver device)

Attack Design – Voice command generation

Activation Command Generation

- Contain wake words ("Hey Siri")
- Tone to the specific user
 - ► TTS-Based Brute Force
 - Text-to-Speech can be used to brute force different voice frequencies
 - Concatenative Speech
 - Record an attackers speech and replay the frequencies of the letters to generate a wake command with the user's tone

General Control Command

Ex: 'Call 911' or open 'www.google.com'

Attack Design – Voice Command Modulation

Baseband signal modulation parameters

- Modulation depth (m)
 - \blacktriangleright m = M/A A carrier amplitude M modulation amplitude
- Carrier Frequency
 - Lowest Frequency of modulated signal > 20kHz to ensure inaudibility
 - Fcarrier w > 20kHz w FrequencyVoice
- Voice selection
 - Voice with small bandwidth
 - Female voice has a wider frequency band which leads to frequency leakage

Attack Design – Voice Commands Transmitter

Powerful transmitter driven by dedicated signal generator

- Validate and quantify results of a DolphinAttack
- Portable transmitter driven by a mobile device
 - Test walk-by attacks
- Structure of transmitters
 - 1) Signal Source produces baseband signals of voice commands
 - > 2) Modulator modulates voice signal onto carrier wave
 - ▶ 3) Speaker transforms signal into acoustic waves

Feasibility Experiments Across VCS

Feasibility Experiments across VCS System Selection

Selected popular VCS and SR systems on the market

Attack	Device/System	Command			
Recognition	Phones & Wearable	Call 1234567890			
Recognition	iPad	FaceTime 1234567890			
Recognition	MacBook & Nexus 7	Open dolphinattack.com			
Recognition	Windows PC	Turn on airplane mode			
Recognition	Amazon Echo	Open the back door			
Recognition	Vehicle (Audi Q3)	Navigation *			
Activation	Siri	Hey Siri			
Activation	Google Now	Ok Google			
Activation	Samsung S Voice	Hi Galaxy			
Activation	Huawei HiVoice	Hello Huawei *			
Activation	Alexa	Alexa			

* The command is spoken in Chinese due to the lack of English support on these devices.

Feasibility Experiments across VCS Experiment Setup

- Equipment
 - Same equipment was used across all devices
- Setup
 - All experiments except for the automobiles SR systems were tested in the same environment

Feasibility Results and Limits

Hardware Dependence

Difference in hardware shows great variance in

- Attack distance
- Success Rate
- SR system Dependence
 - Different audio handling
- Commands Matter
 - Length of the command defines success rate
- Carrier Wave Frequency

Experiment Results

Manuf.	Model	OS/Ver.	SR System	Attacks		Modulation Parameters		Max Dist. (cm)	
				Recog.	Activ.	f_c (kHz) & [Prime f_c] ‡	Depth	Recog.	Activ.
Apple	iPhone 4s	iOS 9.3.5	Siri		\checkmark	20-42 [27.9]	≥ 9%	175	110
Apple	iPhone 5s	iOS 10.0.2	Siri	\checkmark		24.1 26.2 27 29.3 [24.1]	100%	7.5	10
Apple iI	iPhone SE	iOS 10.3.1	Siri	\checkmark		22-28 33 [22.6]	≥ 47%	30	25
	IF HOHE SE		Chrome	\checkmark	N/A	22-26 28 [22.6]	≥ 37%	16	N/A
Apple	iPhone SE †	iOS 10.3.2	Siri	\checkmark	\checkmark	21–29 31 33 [22.4]	$\geq 43\%$	21	24
Apple	iPhone 6s *	iOS 10.2.1	Siri	$$	\checkmark	26 [26]	100%	4	12
Apple	iPhone 6 Plus *	iOS 10.3.1	Siri	×	\checkmark	- [24]	—	—	2
Apple	iPhone 7 Plus *	iOS 10.3.1	Siri	\checkmark	\checkmark	21 24-29 [25.3]	≥ 50%	18	12
Apple	watch	watchOS 3.1	Siri	\checkmark	\checkmark	20-37 [22.3]	≥ 5%	111	164
Apple	iPad mini 4	iOS 10.2.1	Siri	\checkmark	\checkmark	22-40 [28.8]	≥ 25%	91.6	50.5
Apple	MacBook	macOS Sierra	Siri	\checkmark	N/A	20-22 24-25 27-37 39 [22.8]	≥ 76%	31	N/A
LG	Nexus 5X	Android 7.1.1	Google Now	\checkmark		30.7 [30.7]	100%	6	11
Asus	Nexus 7	Android 6.0.1	Google Now	\checkmark	\checkmark	24-39 [24.1]	≥ 5%	88	87
Samsung	Galaxy S6 edge	Android 6.0.1	S Voice	\checkmark		20-38 [28.4]	≥ 17%	36.1	56.2
Huawei	Honor 7	Android 6.0	HiVoice	\checkmark		29-37 [29.5]	≥ 17%	13	14
Lenovo	ThinkPad T440p	Windows 10	Cortana	\checkmark	\checkmark	23.4-29 [23.6]	≥ 35%	58	8
Amazon	Echo *	5589	Alexa	\checkmark		20-21 23-31 33-34 [24]	≥ 20%	165	165
Audi	Q3	N/A	N/A	\checkmark	N/A	21-23 [22]	100%	10	N/A

[‡] Prime f_c is the carrier wave frequency that exhibits highest baseband amplitude after demodulation.

— No result

 † Another iPhone SE with identical technical spec.

* Experimented with the front/top microphones on devices.

Impact Quantification

Impact Quantification - Limits

- Influence of languages
 - Accents
- Impact of background noises
- Impact of sound pressure
- Impact of Attack Distances

Impact Quantification – SPL and Distance

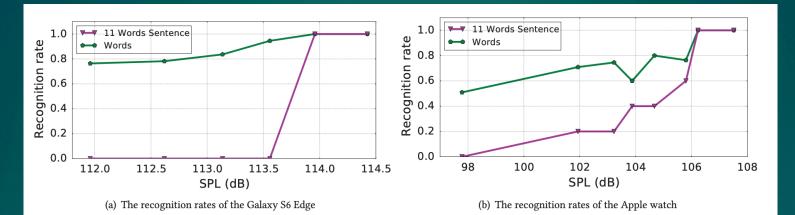


Figure 15: The impact of sound pressure levels on the recognition rates for two portable devices.

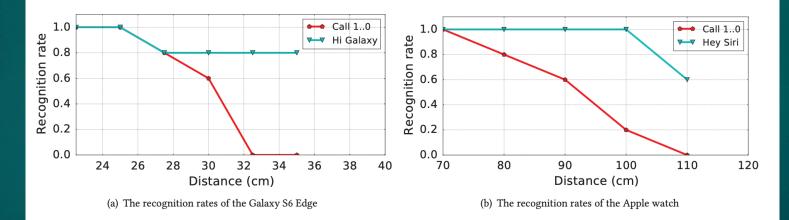


Figure 16: The impact of attack distances on the recognition rates for two portable devices.

Defenses

Defenses

Hardware-based

- Enhanced microphones to eliminate frequencies above 20kHz
- Add a module prior to LPF to detect modulated commands and cancel them out

Software-based

Since the original signal produces is much lower than 20kHz we can detect extensive alteration in the frequency (i.e. F > 20kHz)

Conclusion

Conclusion

DolphinAttack

- Inaudible attack to SR systems
- Leverages amplitude modulation
- In order to avoid abuse of DolphinAttack two defenses were suggested
 - ► Hardware-based
 - Software-based

