DOLPHIN ATTACK: INAUDIBLE VOICE COMMANDS

Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and Wenyuan Xu Zhejiang University

BACKGROUND- DOLPHIN ATTACK

An approach to inject inaudible voice commands at VCS by exploiting the ultrasound channel (i.e., f > 20 kHz) and the vulnerability of the underlying audio hardware

BACKGROUND SPEECH RECOGNITION

- Allows machines or programs to identify spoken words and convert them into machine-readable formats
- It has become an increasingly popular human-computer interaction mechanism because of its accessibility, efficiency, and recent advances in recognition accuracy

BACKGROUND - VCS

- Voice Controllable System
 - Speech recognition combined with a system

Apple iPhone – Siri

Amazon Echo – Alexa

VOICE CONTROLLABLE SYSTEM

Figure 1: The architecture of a state-of-the-art VCS that can take voice commands as inputs and execute commands.

ATTACKS ON VCS

6

- Visiting a malicious site
 - Drive-by-download attack
 - Exploit device with 0-day vulnerabilities
- Spying
 - Initiate video/phone calls to gain visual/sound of device surroundings

ATTACKS ON VCS

- Injecting fake information
 - Inject command to send fake texts/emails
 - Publish fake posts
 - Add fake events in calendar
- Denial of service
 - Airplane mode
- Concealing attacks
 - Dimming screen and lowering volume

BACKGROUND - MICROPHONE

- Voice capture system that converts airborne acoustic waves to electrical signals
- Two main types
 - Electret Condenser Microphone (ECMs)
 - Micro Electro Mechanical System (MEMS)

BACKGROUND SOUND WAVES

9

- Human audible
 - 20 Hz < f <20 kHz
- Ultrasonic
 - f > 20 kHz

THREAT MODEL

- No target device access
- No owner interaction
 - In vicinity, but not in use and draw no attention
- Inaudible voice commands will be used
 - Ultrasounds
- Attacking equipment
 - Speaker to transmit ultrasound
 - Speaker is in the vicinity of target device

FEASIBILITY ANALYSIS

- The fundamental idea of DolphinAttack
 - To modulate the low-frequency voice signal (i.e., baseband) on an ultrasonic carrier before transmitting it over the air
 - To demodulate the modulated voice signals with the voice capture hardware (VCH) at the receiver
 - No control over VCH so modulated signals must be crafted so that it can be demodulated to the baseband signal using the VCH

FEASIBILITY ANALYSIS

12

FEASIBILITY ANALYSIS EXPERIMENTAL SETUP

- Case Study Siri
- Siri Activation
 - "Hey Siri" in the tone of the user it is trained for
- Generate Activation
 - Stolen phone (no owner)
 - Attacker can obtain a few recordings of the owner

- TTS-based Brute Force
 - Downloaded two voice commands from websites of these TTS systems
 - "Hey Siri" from Google TTS was used to train Siri

TTC Systems	voice tune #	# of successful types		
TTS Systems	voice type #	Call 1290	Hey Siri	
Selvy Speech [51]	4	4	2	
Baidu [8]	1	1	0	
Sestek [45]	7	7	2	
NeoSpeech [39]	8	8	2	
Innoetics [59]	12	12	7	
Vocalware [63]	15	15	8	
CereProc [12]	22	22	9	
Acapela [22]	13	13	1	
Fromtexttospeech [58]	7	7	4	

35 of 89 types of activation commands activate Siri – 39%

- 44 phonemes in English
 - 6 are used in "Hey Siri"
- "he", "cake", "city", "carry"
- "he is a boy", "eat a cake", "in the city",
 "read after me"
- Both able to activate Siri successfully

- Voice commands are now generated
- Voice commands must be modulated onto ultrasonic carriers
- Lowest frequency of the modulated signal should be larger than 20 kHz to ensure inaudibility

Figure 9: An illustration of modulating a voice command onto an ultrasonic carrier using AM modulation.

- Voice Commands Transmitter
 - A powerful transmitter with signal generator
 - The portable transmitter with a smartphone

ATTACK EXPERIMENT

https://www.youtube.com/watch?v=21HjF4A3WE4

Attack	Device/System	Command
Recognition	Phones & Wearable	Call 1234567890
Recognition	iPad	FaceTime 1234567890
Recognition	MacBook & Nexus 7	Open dolphinattack.com
Recognition	Windows PC	Turn on airplane mode
Recognition	Amazon Echo	Open the back door
Recognition	Vehicle (Audi Q3)	Navigation *
Activation	Siri	Hey Siri
Activation	Google Now	Ok Google
Activation	Samsung S Voice	Hi Galaxy
Activation	Huawei HiVoice	Hello Huawei *
Activation	Alexa	Alexa

List of system and voice commands set to be tested

Attacks Modulation Parameters Max Dist (am)						et (em)			
Manuf. Model	Model	OS/Ver.	SR System	Attacks		Modulation Parameters		Max Dist. (cm)	
				Recog.	Activ.	f_c (kHz) & [Prime f_c] ‡	Depth	Recog.	Activ.
Apple	iPhone 4s	iOS 9.3.5	Siri	√	√	20-42 [27.9]	≥ 9%	175	110
Apple	iPhone 5s	iOS 10.0.2	Siri	√	√	24.1 26.2 27 29.3 [24.1]	100%	7.5	10
Apple iPhone SE	iOS 10.3.1	Siri	√	✓	22-28 33 [22.6]	≥ 47%	30	25	
		Chrome	√	N/A	22-26 28 [22.6]	≥ 37%	16	N/A	
Apple	iPhone SE †	iOS 10.3.2	Siri	√	✓	21-29 31 33 [22.4]	≥ 43%	21	24
Apple	iPhone 6s •	iOS 10.2.1	Siri	√	√	26 [26]	100%	4	12
Apple	iPhone 6 Plus •	iOS 10.3.1	Siri	×	√	- [24]	-	-	2
Apple	iPhone 7 Plus •	iOS 10.3.1	Siri	√	✓	21 24-29 [25.3]	≥ 50%	18	12
Apple	watch	watchOS 3.1	Siri	√	√	20-37 [22.3]	≥ 5%	111	164
Apple	iPad mini 4	iOS 10.2.1	Siri	√	√	22-40 [28.8]	≥ 25%	91.6	50.5
Apple	MacBook	macOS Sierra	Siri	√	N/A	20-22 24-25 27-37 39 [22.8]	≥ 76%	31	N/A
LG	Nexus 5X	Android 7.1.1	Google Now	√	√	30.7 [30.7]	100%	6	11
Asus	Nexus 7	Android 6.0.1	Google Now	√	√	24-39 [24.1]	≥ 5%	88	87
Samsung	Galaxy S6 edge	Android 6.0.1	S Voice	√	√	20-38 [28.4]	≥ 17%	36.1	56.2
Huawei	Honor 7	Android 6.0	HiVoice	√	√	29-37 [29.5]	≥ 17%	13	14
Lenovo	ThinkPad T440p	Windows 10	Cortana	√	√	23.4-29 [23.6]	≥ 35%	58	8
Amazon	Echo •	5589	Alexa	√	√	20-21 23-31 33-34 [24]	≥ 20%	165	165
Audi	Q3	N/A	N/A	√	N/A	21-23 [22]	100%	10	N/A

[‡] Prime *f_c* is the carrier wave frequency that exhibits highest baseband amplitude after demodulation.

[†] Another iPhone SE with identical technical spec.

Experimented with the front/top microphones on devices.

No result

20

• Experiments of researchers show that the modulation depth is hardware dependent

- The modulation depth at the prime fc is when recognition attacks are successful and 100% accurate
- The minimum depth for successful recognition attacks on each device is shown on table
- Modulation depth m is defined as m = M /A where A is the carrier amplitude, and M is the modulation amplitude
 - If m = 0.5, the carrier amplitude varies by 50% above (and below) its unmodulated level

IMPACT OF LANGUAGE

activating SR systems -- initiating to spy on the user -- denial of service

IMPACT OF BACKGROUND NOISE

Scene	Noises (dB)	Recognition rates		
		Hey Siri	Turn on airplane mode	
Office	55-65	100%	100%	
Cafe	65-75	100%	80%	
Street	75-85	90%	30%	

IMPACT OF ATTACK DISTANCE

Figure 16: The impact of attack distances on the recognition rates for two portable devices.

DEFENSES

- Hardware based
 - Microphone Enhancement
 - "a microphone shall be enhanced and designed to suppress any acoustic signals whose frequencies are in the ultrasound range."
 - Inaudible Voice Command Cancellation
 - add a module prior to LPF to detect the modulated voice commands and cancel baseband

DEFENSES

- Software based
 - Use Supported Vector Machine to detect DolphinAttack
 - A supervised learning model using an algorithm to analyze data for classification

REALISTIC????

CONCLUSION

- Inaudible attacks to SR systems
- Dolphin Attack leverages amplitude modulation
- Hardware and software based defenses