K\sr\(/ﬁ

Using Hardware Features for
Increased Debugging Transparency

Fengwei Zhang, Kevin Leach, Angelos Stavrou,
Haining Wang, and Kun Sun. In S&P'15.

K\sr\(/ﬁ

Overview

Motivation

Background: System Management Mode
(SMM)

System Architecture

Evaluation: Transparency and Performance

Conclusions and Future Directions

K\sr\(/ﬁ

Overview

Motivation

Background: System Management Mode
(SMM)

System Architecture

Evaluation: Transparency and Performance

Conclusions and Future Directions

K\sr\(/ﬁ
Motivation

e Malware attacks statistics

— Symantec blocked an average of 247,000 attacks per
day [1]

— McAfee (Intel Security) reported 8,000,000 new
malware samples in the first quarter in 2014 [2]

— Kaspersky reported malware threats have grown 34%
with over 200,000 new threats per day last year [3]

 Computer systems have vulnerable applications
that could be exploited by attackers.

K\sr\(/ﬁ

Traditional Malware Analysis

Virtual Machine

Hypervisor (VMM)

Hardware

e Using virtualization technology to create an isolated
execution environment for malware debugging

K\sr\(/ﬁ

Traditional Malware Analysis

Malware

Virtual Machine

Hypervisor (VMM)

Hardware

e Using virtualization technology to create an isolated
execution environment for malware debugging

 Running malware inside a VM

Traditional Malware Analysis

Analysis
Tool

>

>

>

Malware

Virtual Machine

Hypervisor (VMM)

Hardware

K\sr\(/ﬁ

e Using virtualization technology to create an isolated

execution environment for malware debugging

 Running malware inside a VM
* Running analysis tools outside a VM

Traditional Malware Analysis

Analysis
Tool

>

>

>

Malware

Virtual Machine

Hypervisor (VMM)

Hardware

Limitations:

K\sr\(/ﬁ

* Depending on hypervisors that have a large TCB (e.g.,

Xen has 500K SLOC and 245 vulnerabilities in NVD)

* Incapable of analyzing rootkits with the same or higher
privilege level (e.g., hypervisor and firmware rootkits)

* Unable to analyze armored malware with anti-
virtualization or anti-emulation techniques

K\sr\(/ﬁ

Our Approach

>

Analysis . Malware
Tool

> Virtual Machine

Hypervisor (VMM)

Hardware

We present a bare-metal debugging system called MalT that
leverages System Management Mode for malware analysis

* Uses System Management Mode as a hardware isolated
execution environment to run analysis tools and can debug
hypervisors

* Moves analysis tools from hypervisor-layer to hardware-layer
that achieves a high level of transparency

K\sr\(/ﬁ

Overview

* Motivation

* Background: System Management Mode
(SMM)

e System Architecture
e Evaluation: Transparency and Performance

* Conclusions and Future Directions

Wayne State University CSC 6991 Topics in Computer Security 10

Kyz/)/
Background: System I\/Ianagemen'eﬁi“/%m

Mode

System Management Mode (SMM) is special CPU mode
existing in x86 architecture, and it can be used as a
hardware isolated execution environment.

* Originally designed for implementing system functions
(e.g., power management)

* |solated System Management RAM (SMRAM) that is
inaccessible from OS

* Only way to enter SMM is to trigger a System
Management Interrupt (SMI)

e Executing RSM instruction to resume OS (Protected
Mode)

Kyz/)/
Background: System Managemenfﬁi‘%m

Mode

Approaches for Triggering a System Management Interrupt (SMl)

» Software-based: Write to an I/O port specified by Southbridge
datasheet (e.g., Ox2B for Intel)

 Hardware-based: Network card, keyboard, hardware timers

Protected Mode System Management Mode

Highest privilege

Software
SMI

Handler

or Isolated SMRAM

Hardware

Interrupts disabled

Normal OS Isolated Execution Environment

K\sr\(/ﬁ

Background: Software Layers

Application

Operating System

Hypervisor (VMM)

Firmware (BIOS) <— SMM

Hardware

KWW
Background: Hardware Layout

Memory slots

Keyboard

- BIOS Super 1/0 —
Memory bus

Serial port

LPC bus
IDE
SATA
Front-side bus Northbridge Internal bus Southbridge Audio
CPU | (memory controller hub) —
MMU and IOMMU (I/O controller hub) USB
CMOS
PCle bus PCI bus

Graphic card slot PCI slots

K\sr\(/ﬁ

Overview

Motivation

Background: System Management Mode
(SMM)

System Architecture

Evaluation: Transparency and Performance

Conclusions and Future Directions

K\sr\(/ﬁ
System Architecture

* Traditionally malware debugging uses virtualization
or emulation

* MalT debugs malware on a bare-metal machine, and
remains transparent in the presence of existing anti-

debugging, anti-VM, and anti-emulation techniques.
Debugging Client Debugging Server

i) Trigger Y/ = SMI
/ /
2) Debug command , Breakpoint<

GDB-like / / Debugged
Debugger

— 3) Response message ApEEition

handler

Inspect
application

Ksz//

Step-by-step Debugging in MalT

 Debugging program instruction-by-instruction

e Using performance counters to trigger an SMI for
each instruction

Protected Mode

System Management Mode

CPU control flow

1nstq

insto

1nstsy

EIP —>

tnsty

Trigger SMI

Trigger SMI

SMM entry

SMM exit

SMM entry

SMM exit

RSM

RSM

SMI Handler

SMI Handler

K\sr\(/ﬁ

Overview

* Motivation

* Background: System Management Mode
(SMM)

e System Architecture
e Evaluation: Transparency and Performance

* Conclusions and Future Directions

Wayne State University CSC 6991 Topics in Computer Security 18

KW)7
Evaluation: Transparency Analy5|s

 Two subjects: 1) running environment and 2)
debugger itself
— Running environments of a debugger
* SMM v.s. virtualization/emulation
— Side effects introduced by a debugger itself
e CPU, cache, memory, I/O, BIOS, and timing
 Towards true transparency

— MalT is not fully transparent (e.g., external timing
attack) but increased

— Draw attention to hardware-based approach for
addressing debugging transparency

KW)7
Evaluation: Performance AnaIyS|s

* Testbed Specification
— Motherboard: ASUS M2V-MX SE
— CPU: 2.2 GHz AMD LE-1250
— Chipsets: AMD K8 Northbridge + VIA VT8237r Southbridge
— BIOS: Coreboot + SeaBIOS

Table: SMM Switching and Resume (Time: us)

Operations Mean STD 95% CI
SMM switching 329 0.08 [3.27,3.32]
SMM resume 458 0.10 [4.55,4.61]

Total 7.87

KW)7
Evaluation: Performance Analy5|s

Table: Stepping Overhead on Windows and Linux (Unit: Times of
Slowdown)

Stepping Methods Windows Linux

T T
Far control transfer 2 2
Near return 30 26
Taken branch 565 192

Instruction 073 349

K\sr\(/ﬁ

Overview

Motivation

Background: System Management Mode
(SMM)

System Architecture

Evaluation: Transparency and Performance

Conclusions and Future Directions

Ksz//

. NV
Conclusions and Future Work

* We developed MalT, a bare-matal debugging system that

employs SMM to analyze malware
— Hardware-assisted system; does not use virtualization or emulation

technology

— Providing a more transparent execution environment

— Though testing existing anti-debugging, anti-VM, and anti-emulation
techniques, MalT remains transparent

Future work

Remote Debugger (“client”)

Debugging Target (“server”)

IDAPro
Tool

Debug command

GDB
Client

GDB
Server

d N SMI Debugged
N | Handler application
\/
Response message

SMM PM

Generic Interaface

\Sx?Z
l'm\illi\jma
References

[1] Symantec, “Internet Security Threat Report, Vol. 19 Main Report,” http:

//www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf,
2014.

[2] McAfee, “Threats Report: First Quarter 2014,"
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2014-summary.pdf.

[3] Kaspersky Lab, “Kaspersky Security Bulletin 2013,” http://media.kaspersky.com/pdf/KSB_2013_EN.pdf.

Wayne State University CSC 6991 Topics in Computer Security 24

