SECURITY ANALYSIS OF
EMERGING SMART HOME
APPLICATIONS

Earlence Fernandes, Jaeyeon jung, Atul Prakash

Presented by

Surya Mani




Content

= Moftivation

» Related Work

= SmartThings-Big Picture
» Security Analysis

» Proof-of-concept attacks

» Defense Mechanism



Motivation

®» Huge number of connected gadgets, systems and appliances that do a
wide variety of different things.

®» Though it provides user with benefits, it also expose user to security risks




Related Work

» A framework for evaluating security risks associated with technologies used at home-
Denning

» Device front
» MyQ garage system, Wink Relay touch controller, Honeywell Tuxedo Touch Controller

» |nvestigate the feasibility of causing physical harm through the explosion of CFLs through an
explojted home automation system

» s Case : sharing smart devices with others

®» Profocol Front — Zigbee and Zwave proftocol

®» |pivestigation on cause of over privilege due to insufficient APl documentation and
videlines on different types of permission- Felt




loT Paper

® First in-depth security analysis of one such “smart home” platform that
allows anyone to conftrol their home appliances from light bulbs to locks
with a PC or smartphone.

» Demonstrate programming framework design flaws

» Analyze protocol operating between SmartThings backend and the client-
side web IDE

» Remote attacks that weaken the home security system independent of
specific protocol in use.

» Evaluation of SmartThings capability model in protecting sensitive device
operations



Smart Home applications




SmartThings

®» SmartThings inferconnects separately operating home appliances to create
a fully connected SmartThings home controlled by smartphone apps.

®» The main goal of SmartThings is to provide a new class of automation by

connecting appliances to one another, to the Internet, and fo
homeowners.




Big Picture




SmartThings - cont.

i SmartThings Cloud Backend |
Three main components Groovy Transformer Sandbox — Groovy Transformer Sandbox
OAuth SmantApp(s) Location SmartDevice(s) || OAuth
= Hubs mappings <Groovy> SMS <Groovy>
{ path v
= SmartThings Cloud Backend gl ® | [lunl g oo gl |
) GET. listDev || "capabiity.motion" capabilty.alarm )
®» Smartphone companion app -} Capability
| - Checks Hk ‘
Control (SSL) Install Apps,
‘ i Configure Devices
aim Hub, SSL
I SmartThings Hub Configure Hub Sl
l ZWave | | WIFi BLE .(SSL. SmartThings
o) - Companion App

Fig. 1. SmartThings architecture overview.




SmartThings System

« SmartApps and SmartDevices

« Capabilities and Authorization

» Events and Subscriptions 1. Reauest Authentication I savrttes

. Webservice SmartApps b

. Sandboxing ﬂ — E J
E(==T=aTm

2 User authenticates with
OAuth on secondary device




SmartApp Structure

0 O ON S W R W -

L 2 SR R U R SR O U
BRNYBRLREREEE

W
<

definition(

name: "DemoApp", namespace: "com.testing",
author: "IoTPaper", description: "Test App",

category:

"Utility")

//query the user for capabilities

preferences |

section("Select Devices") {
input "lockl", "capability.lock", title:
"Select a lock"
input "swl", "capability.switch", title:
"Select a switch"

}

def updated()

{

unsubscribe ()

initialize ()

}

def installed() {
subscribe swl, "switch.on", onHandler
subscribe swl, "switch.off", offHandler

}

def onHandler (evt) {
lockl.unlock()

}

def offHandler(evt) {

lockl.lock ()

Listing 1. SmartApp structure.

Z- Wave Schiage Lock
Select Devices

Select a lock
Tap to set 0
Select a switch
lap to sat J<E]
Assign a name
Frap to set
Set for specific mode(s)

vod o

Fig. 2. [Installation user interface and device enumeration: This example
shows that an app asks for devices that support capability.lock and
capability.switch. The screen on the right results when the user taps
on the first input field of the screen on the left. SmartThings enumerates all
lock devices (there is only one in the example). The user must choose one or
more devices that the app can access.



Security Analysis

Occurrence of over privilege in SmartApps
Insufficient sensitive event data protection
Insecurity of third party integration

Unsafe use of groovy dynamic method invocation

Unrestricted Communication abilities via APl Access control



Occurrence of over privilege in
SMmartApps

Because of SmartThings Framework

» Capabilities — Coarse-grained, providing access to multiple commands and
attributes for a device (55%)

E.g. Capability.lock (Commands: lock and unlock, attribute : lock)

®» SmartApp obtain more capabilities than it request because of SmartApp-
SmartDevice binding (42%)

E.g. SmartApp uses capability.battery




Lock

Allow for the control of a lock device
Light

Allows for the conftrol of a light device

Preferences Reference

capability.lock
Preferences Reference

Attributes
capability.light //consider it for Oven lock: ENUM
Attributes The state of the lock device
switch: ENUM

locked
A string representation of whether the light is on or off

off

The device is locked

unknown

he value of the switch attribute if the light is off The state of the device is unknown

= unlocked

The value of the switch attribute if the light is on The device is unlocked

Commands unlocked with timeout
off() The device is unlocked with a timeout
Turn a light off Commands
on() lock()

Turn a light on Lock the device

unlock()

Unlock the device




Example of over privilege

SmartApp
input "dev”, "capability.battery”

y
SmartDevice1 | SmartDevice2

[ZWave Lock] [Motion Sensor]
capability. battery capability.battery

capability.lock capability.motion
capability.refresh capability.refresh

) .

-

[ Physicalzwave | [ Physical Motion
Lock Sensor

A \

.

Fig. 3. SmartApps vs. SmartDevices vs. Physical Devices: When a user
installs this SmartApp, SmartThings will show the lock and the motion
sensor since both the corresponding device handlers (SmartDevicel and

SmartDevice2) expose the requested capability.




Insufficient sensitive event data
protection

Because of insecure event sub-system design

» After a SmartApp is approved to access a SmartDevice, it monitors any
data published by SmartDevice (e.g. Lock codes)

» SmartApp which acquired 128-bit identifier(unique to SmartDevice) can
monitor all the events.

subscribe( deviceObj, attrstring, handler)
®» Fvents generated from devices can be spoofed. As the framework,
» does not have control over raising events

» verify the infegrity or the origin of an event by triggered SmartApps



Insecurity of third party integration

» OAuth bearer token — attached to request while invoking the WebService
SmartApp HTTP endpoints

Access Grant
(s)

\8) P SmartThings
< Access Token Auth Service -
@ Connect SmartThings Action GET Endboints
' > Es’“e"‘a' 1\7) P - SmartThings
N 2) Go to Login to SmartThings yTtem < List of Endpoints Endpoints <€
Browser (€g.If ) Service
Access Grant
m AP| Request .
> 8 P» SmartThings

I ~ APl Response Web Services
| =
|

Access Grant (Authorization Code)

« I
( 3) Login with Username/Password -
SmartThings
< m Redirect to App Install Page Login Page
Install -
Install fi i rtA
_@ nstall & Configure Web Services SmartApp “AP| Access” »  “APIAccess”

(Authenticated page requiring oauth access token) SmartApp SmartApps




Unsafe use of groovy dynamic method
Invocation

» String representation of a command is received over HTTP

def str = “foo”

» The string is executed directly by dynamic method invocation (method can
be invoked using name as a string)

foo()

Unrestricted Communication abilities vio
APl Access control

» No restrictions on outbound Internet communication of SmartApps

-leaks sensitive information




Empirical security analysis

TABLE 11
BREAKDOWN OF OUR SMARTAPP AND SMARTDEVICE DATASET

Total # of SmartDevices 132

# of device handlers raising events using createEvent 111
and sendEvent. Such events can be snooped on by
SmartApps.

Total # of SmartApps 499
# of apps using potentially unsafe Groovy dynamic method 26

invocation.

# of OAuth-enabled apps, whose security depends on correct 27
implementation of the OAuth protocol.

TABLE IV
OVERPRIVILEGE ANALYSIS SUMMARY
Reason for Overprivilege # of Apps
Coarse-grained capability 276 (55%)
Coarse SmartApp-SmartDevice binding 213 (43%)

# of apps using unrestricted SMS APIs. 131
# of apps using unrestricted Internet APlIs. 36

TABLE 111
COMMANDS/ATTRIBUTES OF 64 SMARTTHINGS CAPABILITIES

Documented Completed

Commands 66 03
Attributes 60 85




PROOF-OF-CONCEPT ATTACKS




A. Backdoor pin Code Injection Aftack

» QOver privilege using SmartApp-SmartDevice coarse-binding
» Stealing an OAuth token using the hard-coded secret in the existing binary
» Getting a victim to click on a link pointing to the SmartThings Web site

» Command injection to an existing Webservice SmartApp




Stealing the OAuth Token

parameter

response_type

client _id
scope

redirect_uri

GET https://graph.api.smartthings.com/oauth/
authorize?

response_type=code&
client_id=YOUR-SMARTAPP-CLIENT-ID &
scope=app&
redirect_uri=YOUR-SERVER-URI

value

Use code to obtain the authorization code.

The OAuth client ID of the SmartApp.
This should always be “app” for this authorization flow.

The URI of your server that will receive the authorization code.



Command |Injection Attacks

» WebService SmartApp associated
with the third-party Android app
uses Groovy dynamic method
invocation

» Format of the command string
needed to activate the SmartApp
endpoint

1 mappings {
path("/devices"™) { action: [ GET: "listDevices"]

3 path("/devices/:id") { action: [ GET:
"getDevice"™, PUT: "updateDevice"] }

4 // ——additional mappings truncated--

5

6

7 def updateDevice ()

& def data = request.JSON

9 def command = data.command

10 def arguments = data.arguments

n

2 log.debug "updateDevice, params: ${params},

request: ${data}"

13 if (!command) {

4 render status: 400, data: ’{"msg": "command
is required"}’

15 } else |

6 def device = allDevices.find { it.id ==
params.id }

1”7 if (device) {

1% if (arguments) |

9 device. "$command" (xarguments)

20 } else |

2 device. "$command" ()

2z render status: 204, data: "{}"

24 | else |

25 render status: 404, data: ’{"msg": "Device

not found"}’
% }

7 }

Listing 2. Portion of the Logitech Harmony WebService SmartApp available
in source form. The mappings section lists all endpoints. Lines 19 and 21 make
unsafe use of Groovy dynamic method invocation, making the app vulnerable
to command injection attacks. Line 23 returns a HTTP 204 if the command
is executed. Our proof-of-concept exploits a similar WebService SmartApp.



B. Door Lock Pin Code Snooping

Attack

\/ 4. ZWave Commands & Reports

3a. zwave.userCodeVl.userCecdeSet
3b. zwave.userCodeVl.userCedeGet

1. subscribe('codeReport')

5. codeReport event

Fig. 5. Snooping on Schlage lock pin-codes as they are created: We use the
Schlage FE5S99 lock in our tests.

ZWave Lock | 2. setCode | |ock Code Battery
Device Handler Manager App Monitor App

] zw device:02,

2 command:9881,

3 payload:00 63 03 04 01 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A
4 parsed to

S5 [['name’:'codeReport’, 'value':4,

6 'data’;['code’:'8877'],

7 'descriptionText’:"ZWave Schlage Lock code 4 set’,

8 'displayed’:true,

9 'isStateChange’:true,

10 'linkText':"ZWave Schlage Lock']]



C. Disabling Vacation Mode Attack

®» Depends on the “mode” property of the location object
» SmartThings does not have security controls around the SendLocationEvent API

Even spoofing by the attack SmartApp
» Attack launched from any SmartApp without requiring the specific capabilities




D. Fake Alarm Attack

Attack launched from any SmartApp without requiring the specific
capabilities

Attack SmartApp is installed in the system
Even spoofing by the attack SmartApp

Controlling the device



Survey Study of SmartThings Users




Table VI

TABLE VI

SURVEY RESPONSES OF 22 SMARTTHINGS USERS

Interest in installing battery monitor SmartApp:

Interested or very interested 17 77%
Neutral - 18%
Not interested at all 1 5%
Set of devices that participants would like the battery
monitor app to monitor:
Selected motion Sensor 21 95%
Selected Schlage door lock 20 91%
Selected presence Sensor 19 86%
Selected FortrezZ alarm 14 64%
Participants’ understanding of security risks—# of
participants who think the battery monitor app can
perform the following:
Cause FortrezZ alarm to beep occasionally 12 55%
Send battery levels to remote server 11 50%
Send motion and presence sensor data to remote server 8 36%
Disable FortrezZ alarm 5 23%
Send spam email from hub 5 23%
Download illegal material using hub 3 14%
Send door access codes to remote server 3 14%
Participants’ reported feelings if the battery monitor
app sent out door lock pin codes to a remote server:
Upset or very upset 22 100%




Defense Mechanism




THANK YOU




