
Ryoan: A Distributed Sandbox for
Untrusted Computation on Secret
Data

PRESENTED BY: WRITTEN BY:
NICHOLAS BURTON TYLER HUNT

 ZHITING ZHU

 YUANZHONG XU
 SIMON PETER

 EMMETT WITCHEL

Big Data, Your Information,
and Security

Related Work

u  Haven

u  MiniBox

u  OverShadow and others

Issues

Ryoan

Threat Model

In Scope
u  User is distrustful of the service

u  Service can outsource work, becoming a
user

u  User does not trust software at any
privilege level

u  Covert software channel attacks

Out of Scope
u  DoS attacks

u  Hardware limitation based side-channel
attacks

u  Execution time based side-channel
attacks

Hardware Limitations

u  SGX page faults

u  Cache Timing

u  Address Bus Monitoring

u  Processor Monitoring

Main Components of Ryoan

Intel SGX, and how Ryoan uses it

u  Available on all recent Intel processors

u  Provides a Hardware Isolated Execution Environment via Enclaves

u  SGX provides enclave identities (hash of enclave’s initial state)

u  Assume initial state of an enclave cannot be impersonated

u  Ryoan checks enclave’s identity to ensure it is of Ryoan origin

Google Native Client, and how Ryoan
uses it

u  Sandbox for running x86/86-64 code using fault isolation

u  Two parts: verifier, service runtime

u  Verifier guarantees a module cannot break out of NaCl.

u  Intercepts System Calls and passes them to Ryoan instead of the OS

How is it put together?

A Single Ryoan Instance

A Single Ryoan Instance

Directed Acyclic Graph

u  A finite graph, with no loops

u  Improved security

Labels and DAG

u  Use of labels to mark secret data, and which previous enclaves have seen it

u  Each module can remove its own label

u  Labels together are a tag

Labels and DAG

u  Non-confining and Confining Labels

u  Audit Trail

u  Data Oblivious Communication

Individual Module Security

Module Security

u  Verifier ensures code adheres to Ryoan format

u  Memory access is constrained to the provided memory for the module

u  NaCl guarantees still stand

u  Ryoan disallows SGX instructions in modules

u  Single processing opportunity per unit of work/input

u  After processing and sending output, Ryoan instance is deleted or reset

Module Security

u  When a Ryoan instance is confined it disallows communication with the OS

u  Ryoan provides a system API

u  Virtual File System

u  mmap calls handled by Ryoan API to satisfy memory allocation

u  Fixed and Quantized processing times

u  System calls to OS intercepted by Ryoan-libc

u  Checkpoint Module Resetting

Checkpoint Module Resetting

Implementation

Implementation

u  Ryoan-libc

u  Module Address Space

u  I/O control

u  Key Establishment Between enclaves

u  Checkpoint Code

Examples and Use cases

Overhead

Overhead

Questions?

