
SCONE:	Secure	Linux	Containers	with	Intel	SGX	
Sergei	Arnautov1,	Bohdan	Trach1,	Franz	Gregor1,	Thomas	Knauth1,	Andre	MarGn1,	
ChrisGan	Priebe2,	Joshua	Lind2,	Divya	Muthukumaran2,	Dan	O’Keeffe2,	Mark	L	SGllwell2,	
David	Goltzsche3,	David	Eyers4,	R¨udiger	Kapitza3,	Peter	Pietzuch2,	and	Christof	Fetzer1	
	
1Fakult¨at	InformaGk,	TU	Dresden,	christof.fetzer@tu-dresden.de	
2Dept.	of	CompuGng,	Imperial	College	London,	prp@imperial.ac.uk	
3InformaGk,	TU	Braunschweig,	rrkapitz@ibr.cs.tu-bs.de	
4Dept.	of	Computer	Science,	University	of	Otago,	dme@cs.otago.ac.nz	
	

Saeid	Mofrad	



1-INTRODUCTION:	
	
Linux	Containers:	
	
Containers	use	OS-level	virtualizaGon	and	they	are	popular	for	packaging,	deploying	
and	managing	services	such	as	key/value	stores	and	web	servers.		
Unlike	VMs,	they	do	not	require	hypervisors	or	a	dedicated	OS	kernel.	Instead,	they	
use	kernel	features	to	isolate	processes,	and	thus	do	not	need	to	trap	system	calls	or	
emulate	hardware	devices.		
•  Container	process	can	run	as	normal	system	process.	
They	are	lightweight	(they	use	the	host	OS	for	I/O	operaGons,	resource	management,	
etc.)	faster	I/O	throughput	and	latency	than	VMs		
IsolaGon	is	weak	since	it	is	using	so`ware	kernel	mechanisms,	make	it	easier	for	
aaackers	to	compromise	the	confidenGality	and	integrity	of	applicaGon	data	within	
containers.	
•  Docker	and	LXC	are	using	for	the	packaging	of	the	containers.	
•  Docker	Swarm	or	Kubernetes	are	using	for	their	deployment.	



What	is	SCONE	?	
SCONE		is	a	Secure	Container	Environment	for	Docker	that	uses	SGX	to	run	Linux	
applicaGons	in	secure	containers.	
	
Goal	of	SCONE:	
1.  	Run	unmodified	Linux	applicaGons	
2.  	In	containers		
3.  	In	an	untrusted	cloud	
4.  	Securely		with	acceptable	performance	
	
SCONE	Proper7es:	
1.  Secure	containers	have	a	small	TCB.	
2.  Secure	containers	have	a	low	overhead.	
3.  Secure	containers	are	transparent	to	Docker.	
	



Design	trade-offs:	
	
what	system	support	should	be	placed	inside	an	enclave	to	enable	the	secure	
execuGon	of	Linux	processes	in	a	container?	
Challenges	:	Security	decision	about	the	size	of	the	TCB	and	the	exposed	interface	to	
the	outside	world	and	performance	impact	because	of	the	SGX	limitaGon).	
TCB	SIZE:	Bigger	TCB	Larger	Aaack	surface	
	
External	container	interface:	To	execute	unmodified	processes	inside	secure	
containers,	the	container	must	support	a	C	standard	library	(libc)	interface.	Since	any	
libc	implementaGon	must	use	system	calls,	which	cannot	be	executed	inside	of	an	
enclave,	a	secure	container	must	also	expose	an	external	interface	to	the	host	OS.		
As	the	host	OS	is	untrusted,	the	external	interface	becomes	an	aaack	vector.	
	
	
	



To	jusGfy	the	design	of	SCONE,	They	explored	alternate	
design	choices.	
	

Figure	1a	shows	a	prior	design	point,	as	
demonstrated	by	Haven,	which	minimizes	the	
external	interface	by	placing	an	enGre	
Windows	library	OS	inside	the	enclave.	
A	benefit	of	this	approach	is	that	it	exposes	
only	a	small	external	interface	with	22	calls	
because	a	large	porGon	of	a	process’	system	
support	can	be	provided	by	the	library	OS.	The	
library	OS,	however,	increases	the	TCB	size	
inside	of	the	enclave.	



To	jusGfy	the	design	of	SCONE,	They	explore	alternate	
design	choices.(cont.)	
	 Figure	1b	shows	the	opposite,	extreme	design	

point:	
the	external	interface	is	used	to	perform	all	libc	
library	calls	made	by	the	applicaGon.	This	raises	
the	challenge	of	protecGng	the	confidenGality	
and	integrity	of	applicaGon	data	whilst	
exposing	a	wide	interface.	For	example,	I/O	
calls	such	as	read	and	write	could	be	used	to	
compromise	data	within	the	enclave,	and	code	
inside	the	secure	container	cannot	trust	
returned	data.	A	benefit	of	this	approach	is	that	
it	has	minimal	TCB	inside	the	enclave—only	a	
small	shim	C	library	needs	to	relay	libc	calls	to	
the	host	libc	library	outside	of	the	enclave.	



To	jusGfy	the	design	of	SCONE,	They	explored	alternate	design	
choices.(Cont.)	
	

Figure	1c	shows	a	middle	ground	by	defining	
the	external	interface	at	the	level	of	system	
calls	executed	by	the	libc	implementaGon.	
•  shield	libraries	can	be	used	to	protect	a	
security-sensiGve	set	of	system	calls:	file	
descriptor	based	I/O	calls,	such	as	read,	
write,	send,	and	recv,	are	shielded	by	
transparently	encrypGng	and	decrypGng	the	
user	data.	



Table	1	Shows	the	performance	and	resource	metrics	
for	each	service	using	the	Linux	library	OS	compared	
to	a	naGve	glibc	deployment.	On	average,	the	library	
OS	increases	the	TCB	size	by	5x,	the	service	latency	
by	4x	and	halves	the	service	throughput.	



Observation: System call overhead and Memory Access 
Overhead. A micro-benchmark	on	an	Intel	Xeon	CPU	E3-1230	v5	at	3.4	GHz	measuring	the	maximum	rate	at	
which	pwrite	system	calls	can	be	executed	with	and	without	an	enclave.	



End	of	presenta7on	





3.2	External	interface	shielding:	
	
SCONE	supports	a	set	of	shields.	Shields	focus	on:		
(1)	PrevenGng	low-level	aaacks,	such	as	the	OS	kernel	controlling	pointers	and	buffer	
sizes	passed	to	the	service	
(2)	ensuring	the	confidenGality	and	integrity	of	the	applicaGon	data	passed	through	the	
OS.		
SCONE	supports	shields	for:		
(1) the	transparent	encrypGon	of	files	
(2)	the	transparent	encrypGon	of	communicaGon	channels	via	TLS	
(3)	the	transparent	encrypGon	of	console	streams.	
	
A	shield	also	has	configuraGon	parameters,	which	are	encrypted	and	can	be	accessed	
only	a`er	the	enclave	has	been	iniGalized.	



File	system	shield:	
	
The	file	system	shield	protects	the	confidenGality	and	integrity	of	files.	
Container	image	creator	must	define	three	disjoint	sets	of	file	path	prefixes:	
(1) 	Unprotected	files,		
(2) 	encrypted	and	authenGcated	files,	
(3) 	authenGcated	files.	
-Processes	in	a	secure	container	have	access	to	the	standard	Docker	tmpfs,	but	it	is	
costly	as	lightweight	alternaGve	SCONE	supports	a	secure	ephemeral	file	system	through	
its	file	system	shield.	
the	ephemeral	file	system	maintains	the	state	of	modified	files	in	non-enclave	memory	
and	it	is	faster	than	tmpfs.	
	
The	ephemeral	file	system	is	resilient	against	rollback	aaack:	a`er	restarGng	the	
container	process,	the	file	system	returns	to	a	preconfigured	startup	state	that	is	
validated	by	the	file	system	shield,	and	therefore	it	is	not	possible	for	an	aaacker	to	
rollback	the	file	system	to	an	intermediate	state.	This	is	also	true	during	
runGme,	since	the	metadata	for	files’	blocks	resides	within	the	enclave.	
	

	



Network	shield:	
SCONE	permits	clients	to	establish	secure	tunnels	to	it	and	wraps	all	socket	operaGons	
and	redirects	them	to	a	network	shield.		
The	network	shield,	upon	establishing	a	new	connecGon,	performs	a	TLS	handshake	and	
encrypts/decrypts	any	data	transmiaed	through	the	socket.	
The	private	key	and	cerGficate	are	read	from	the	container’s	file	system.	Thus,	they	are	
protected	by	the	file	system	shield.	
Console	shield:	
Container	permit	authorized	processes	to	aaach	to	the	stdin,	stdout,	and	stderr.	
SCONE	supports	transparent	encrypGon	for	them.	The	symmetric	encrypGon	key	is	
exchanged	between	the	secure	container	and	the	SCONE	client	during	the	startup	
procedure.	
	A	console	shield	encrypts	a	stream	by	splijng	it	into	variable-sized	blocks.	
A	stream	is	protected	against	replay	and	reordering	aaacks	by	assigning	each	block	a	
unique	idenGfier,	which	is	checked	by	the	authorized	SCONE	client.	
	



3.3	Threading	model:	
SCONE	supports	an	M:N	threading	model	in	which	M	applicaGon	threads	
inside	the	enclave	are	mapped	to	N	OS	threads.	->fewer	enclave	transiGons.	

-MulGple	OS	threads	in	SCONE	can	enter	an	enclave.	
Each	thread	executes	the	scheduler.	
Scheduler	checks	if:	(1)	an	applicaGon	thread	needs	to	be	
woken	due	to	an	expired	Gmeout	or	the	arrival	of	a	
system	call	response;	or	(2)	an	applicaGon	thread	is	
waiGng	to	be	scheduled.	In	both	cases,	the	scheduler	
executes	the	associated	thread.	
-The	number	of	OS	threads	inside	the	enclave	is	typically	
bound	by	the	number	of	CPU	cores.	
-The	system	call	threads	reside	in	the	kernel	indefinitely	
to	eliminate	the	overhead	of	kernel	mode	switches.	
-When	there	are	no	pending	system	calls,	the	
threads	back-off	to	reduce	CPU	load.	
	
	
	
	



3.4 Asynchronous system calls: 
This	interface	consists	of	two	lock-free,	mulG-producer,	mulG-consumer	queues:	a	request	queue	and	a	response	
queue.	

 
1.  When system call happens copies memory-based 

arguments outside of the enclave 
2.  	adds	a	descripGon	of	the	system	call	to	a	
								syscall	slot	data	structure	containing	the	system	call	
								number	and	arguments.	The	syscall	slot	and	the	arguments	
								use	thread-local	storage.	
3.  Next	the	applicaGon	thread	yields	to	the	scheduler	,which					

will	execute	other	applicaGon	threads	unGl	the	reply	to	the	
system	call	is	received	in	the	response	queue.	

4.  The	system	call	is	issued	by	placing	a	reference	to	the	
syscall	slot	into	the	request	queue.	

5.		When	the	result	is	available	in	the	response	queue	,	
buffers	are	copied	to	the	inside	of	the	enclave,	and	all	
pointers	are	updated	to	point	to	enclave	memory	buffers.	
6.	The	associated	applicaGon	thread	is	scheduled	
again.	
	
	



3.5	Docker	integra7on:	
The	integraGon	of	secure	containers	with	Docker	requires	changes	to	the	build	process	of	secure	image,	and	
change	to	client-side	extensions.	
SCONE	does	not	require	modificaGons	to	the	Docker	Engine	or	its	API.	

Container	startup:	Each	secure	container	
requires	a	startup	configuraGon	file	(SCF).	
The	SCF	contains	keys	to	encrypt	standard	
I/O	streams,	a	hash	of	the	FS	protecGon	
file	and	its	encrypGon	key.	
Since	SGX	does	not	protect	the	
confidenGality	of	enclave	code,	pujng		
the	startup	configuraGon	in	the	enclave	
itself	is	not	an	opGon.	
	Instead,	a`er	the	executable	has	
iniGalized	the	enclave,	the	SCF	is	received	
through	a	TLS	protected	network	
connecGon,	during	enclave	startup.	



Evalua7on:		
They	Used	Two	web	servers,	Apache,	and	NGINX	,Memcached	;	Redis	;	and	
SQLite.		
The	applicaGons	include	a	mix	of	compute	(e.g.,	SQLite)	and	I/O	intensive	
(e.g.,	Apache	and	Memcached)	workloads.	
	
Three	variants	for	each	applica7on:		
	
1-	one	built	with	the	GNU	C	library	(glibc);	
2-	one	built	with	the	musl		C	library	adapted	to	run	inside	SGX	enclaves	with	
synchronous	system	calls	(SCONE-sync);		
3-	one	built	with	the	same	musl	C	library	but	with	asynchronous	system	calls	
(SCONE-async).	
For	applicaGons	that	do	not	support	encrypGon	(e.g.,Memcached	and	Redis),	
they	use	Stunnel		to	encrypt	their	communicaGon	in	the	glibc	variant.	









FIGURE 14 SHOWS HOW MANY PWRITE() 
CALLS CAN BE EXECUTED BY SCONE-ASYNC, SCONE-SYNC 
AND NATIVELY.




CONCLUSION


•  SCONE	increases	the	confidenGality	and	
integrity	of	containerized	services	using	Intel	
SGX.	

•  TCB	is	between	0.6–2	the	applicaGon	code	size	
and	are	compaGble	with	Docker.	

•  asynchronous	system	calls	and	a	kernel	module	
make	SGX	overhead	less.	

•  For	all	evaluated	services,	they	achieved	at	least	
60%	of	the	naGve	throughput;	



REFERENCE:


•  haps://www.ibr.cs.tu-bs.de/users/goltzsch/papers/osdi2016scone-preprint.pdf	

•  haps://www.usenix.org/sites/default/files/conference/protected-files/osdi16_slides_knauth.pdf	


