
Going	Na)ve:	Using	a	Large-Scale	Analysis	of	
Android	Apps	to	Create	a	Prac)cal	Na)ve-Code	

Sandboxing	Policy	
Vitor	Afonso,	Antonio	Bianchi,	Yanick	Fratantonio,	Adam	Doupe,	Mario	

Polino,	Paulo	de	Geus	,	Christopher	Kruegel,	and	Giovanni	Vigna	

	
	
	

Sudeep	Nanjappa	Jayakumar	



Agenda	
1.  What	is	Sandboxing?	
2.  Introduc)on	
3.  Sandbox	Security	Relevance	
4.  Contribu)ons	
5.  Background	
6.  Sandboxing	Mechanisms	
7.  Analysis	Infrastructure	
8.  Transi)ons	
9.  Evalua)on	&	Insights	
10.  Usage	of	External	Libraries		
11.  Security	Policy	Genera)on		
12.  Limita)ons	
13.  Related	Work	
14.  Conclusion	



Introduc)on	

•  Google’s	 Android	 opera)ng	 system	 currently	 enjoys	 the	 largest	 market	 share,	
currently	at	84.7%,	of	all	current	smartphone	opera)ng	systems.	

•  The	official	app	market	 for	Android,	 the	Google	Play	Store,	has	around	1.4	million	
available	apps.	

•  The	na)ve	code	has	direct	access	to	the	memory	of	the	running	process,	from	this	it	
can	completely	modify	and	change	the	behavior	of	the	Java	code.	

•  An	extensive	analysis	of	the	na)ve	code	usage	in	1.2	million	Android	apps.	First	the	
sta)c	analysis	was	done	on	446k	apps	using	na)ve	code	and	then	with	the	dynamic	
analysis.	

	



What	is	Sandboxing?	

•  Sandbox	 is	a	security	mechanism	for	separa)ng	running	programs.	 It	 is	ocen	used	
to	 execute	 untested	 or	 untrusted	 programs	 or	 code,	 possibly	 from	 unverified	 or	
untrusted	 third	 par)es,	 suppliers,	 users	 or	 websites,	 without	 risking	 harm	 to	 the	
host	machine	or	opera)ng	system.	

•  A	 sandbox	 is	 implemented	 by	 execu)ng	 the	 socware	 in	 a	 restricted	 opera)ng	
system	environment,	 thus	 controlling	 the	 resources	 (for	 example,	 file	 descriptors,	
memory,	file	system	space,	etc.)	that	a	process	may	use.	

	
	



Sandbox	Security	Relevance	
•  Least-Privilege:	 The	 na)ve	 code	 of	 the	 app	 should	 have	 access	 only	 to	 what	 is	

strictly	required,	thus	reducing	the	chances	the	na)ve	component	could	extensively	
damage	the	system.		

•  Compartmentaliza5on:	The	na)ve	 code	of	 the	 app	 should	 communicate	with	 the	
Java	part	only	using	specific,	limited	channels,	so	that	the	na)ve	component	cannot	
modify,	 interact	with,	or	otherwise	alter	the	Java	run)me	and	code	in	unexpected	
ways.		

•  Usability:	The	 restric)ons	enforced	by	 the	sandbox	must	not	prevent	a	 significant	
por)on	of	benign	apps	from	func)oning.	

•  Performance:	 The	 sandbox	 implementa)on	 must	 not	 impose	 a	 substan)al	
performance	overhead	on	apps	



Contribu)ons	

1.  A	tool	is	developed	to	monitor	the	execu)on	of	the	na)ve	components	in	android	
applica)ons	and	this	is	used	to	study	the	na)ve	code	usage	in	the	android.	

2.  The	collected	data	is	analyzed	and	ac)onable	insights	are	provided	in	to	how	the	
benign	 apps	 use	 the	 na)ve	 code	 .	 Here	 the	 raw	 data	 is	made	 available	 for	 the	
community.	

3.  Finally	 the	 results	 are	 shown	 that	 elimina)ng	 permissions	 of	 na)ve	 code	 is	 not	
ideal	as	the	policy	would	break	the	apps	in	the	dataset.		



Background	
To	understand	the	analysis,	it	is	necessary	to	review	the	android	security	mechanisms	
on	 how	 na)ve	 code	 is	 used	 in	 android	 systems,	 what	 damage	 it	 can	 cause	 and	
previously	proposed	sandboxing	mechanisms.	
	
•  Android	Security	Mechanisms	
•  Na)ve	Code	
•  Malicious	Code		
•  Na)ve	Code	Sandboxing	mechanisms	



Sandboxing	Mechanisms	
Android	Security	Mechanisms:	
•  When	apps	are	installed	on	an	Android	phone,	they	are	assigned	a	new	user	(UID)	and	groups	(GIDs)	

based	on	the	permissions	requested	by	the	app	in	its	manifest.	
•  Apps	must	declare	the	permissions	needed	in	the	manifest,	and	at	installa)on	)me	the	requested	

permissions	are	presented	to	the	user,	who	decides	to	con)nue	or	cancel	the	installa)on.	
	

Na5ve	Code:	
There	are	four	ways	in	which	the	Java	code	of	an	Android	app	can	execute	na)ve	code.	
1.  Exec	methods	
2.  Load	methods	
3.  Na)ve	methods	
4.  Na)ve	ac)vity	

		

		



Sandboxing	Mechanisms	contd…	
Malicious	Na5ve	code:	
•  Malicious	apps	can	use	na)ve	code	to	hide	malicious	ac)ons	from	sta)c	analysis	of	the	Java	por)on	

of	the	app.	
•  Akackers	 can	 directly	 call	 system	 calls	 to	 execute	 root	 exploits	 is	 by	 exploi)ng	 vulnerabili)es	 in	

na)ve	code	used	by	benign	apps.	

Na5ve	Code	Sandboxing	Mechanisms:	
•  Several	approaches	have	been	proposed	to	sandbox	na)ve	code	execu)on.	For	instance	Na)veGuard	

and	Robusta.	
•  These	approaches	move	the	execu)on	of	na)ve	code	to	a	separate	process.	
•  Two	complementary	goals	are	obtained:	(1)	the	na)ve	code	cannot	tamper	with	the	execu)on	of	the	

Java	code	and	(2)	different	security	constraints	can	be	applied	to	the	execu)on	of	the	na)ve	code.	
	



Analysis	Infrastructure	

•  Design	 and	 implementa)on	 of	 a	 system	 that	 dynamically	 analyzes	 android	
applica)ons	is	used	to	study	the	na)ve	code.	

•  Also	the	na)ve	code	sandboxing	policy	is	generated	automa)cally.	
•  Analysis	 consists	 an	 instrumented	 emulator	 which	 records	 all	 the	 events	 and	

opera)ons	executed	within	 the	na)ve	code	such	as	 invoked	syscalls	and	na)ve	to	
java	communica)on.	

•  Android	system	4.3	is	used	for	the	analysis.	
	



Analysis	Infrastructure	contd…	
Sta5c	Prefiltering:		
•  Performing	dynamic	analysis	on	all	the	apps	would	take	more	)me,	so	the	sta)c	analysis	was	used	to	

filter	the	apps	which	had	na)ve	method,	na)ve	ac)vity,	having	a	call	to	exec	method,	having	a	call	to	
load	method	or	having	an	ELF	file	inside	the	APK.	

•  Androguard	tool	 is	used	for	the	sta)c	analysis,	and	 iden)fy	the	na)ve	methods,	 it	was	searched	in	
the	dalvik	bytecode	with	the	modifier	named	“na)ve”.	

•  Na)ve	ac)vi)es	were	iden)fied	by	two	methods:	
1.  Looking	for	a	Na)veAc)vity	in	the	manifest.	
2.  Looking	for	classes	declared	in	the	Dalvik	

	bytecode	that	extend	Na)veAc)vity.	

	



Analysis	Infrastructure	contd…	
Dynamic	Analysis	System:	
•  Acer	iden)fying	the	which	apps	use	the	na)ve	code,	now	we	need	to	understand		how	apps	use	the	

na)ve	code	and	for	this	we	use	dynamic	analysis	to	monitor	several	types	of	ac)ons	performed	by	
the	apps.	

•  This	includes	system	calls,	JNI	calls,	Binder	transac)ons,	calls	to	Exec	methods,	loading	of	third-party	
libraries,	calls	to	na)ve	ac)vi)es’	na)ve	callbacks,	and	calls	to	na)ve	methods.	The	system	calls	were	
captured	using	the	strace	tool.	

•  To	monitor	JNI	calls,	calls	to	na)ve	methods,	and	library	loading,	the	modifica)on	to	“libdvm”	is	
done.	

•  Also	monitor	the	amount	of	data	exchanged	between	na)ve	and	Java	code	is	done	where	measuring	
the	amount	of	data	passed	in	parameters	of	calls	from	na)ve	code	to	Java	methods	and	vice	versa,	
as	well	as	the	size	of	the	returned	value.	

•  Also	the	size	of	the	data	is	captured	to	set	fields	in	java	objects.	

	



Transi)ons	



Transi)ons	



Evalua)on	&	Insights	
•  Analysis	 is	 limited	 to	 2	minutes	 to	 keep	 it	 feasible	 and	Google	Monkey	 to	 s)mulate	 the	 app	with	

random	 events,	 and	we	 then	 automa)cally	 generated	 a	 series	 of	 targeted	 events	 to	 s)mulate	 all	
ac)vi)es,	services,	and	broadcast	receivers	defined	in	the	applica)on.	

•  During	 dynamic	 analysis,	 33.6%	 (149,949)	 of	 the	 apps	 iden)fied	 by	 sta)c	 analysis	 as	 poten)ally	
having	na)ve	code	actually	executed	the	na)ve	code.	

•  Also	they	have	manually	analyzed	sta)cally	&	dynamically,	
						20	random	apps	that	were	having	na)ve	code.	8	apps	were	
						unreachable	from	the	java	code	and	the	remaining	apps		
						too	complex	to	manually	inspect.	



Na)ve	code	Behavior	

•  The	 ac)ons	 were	 split	 into	 those	 performed	 by	 shared	
libraries	(including	those	performed	during	library	loading,	
na)ve	methods,	 and	 na)ve	 ac)vi)es)	 and	 those	 that	 are	
the	 result	 of	 invoking	 custom,	 executable,	 and	 binaries	
through	Exec	methods.	

•  They	have	also	presented	the	ac)ons	performed	using		
						standard	binaries	(i.e.,	not	created	by	the	app),	but		
						in	this	case	based	on	their	names	and	parameters,		
						instead	of	looking	at	the	system	calls.		



Na)ve	code	Behavior	



Na)ve	code	Behavior	
•  Around	3,669	apps	that	perform	an	ac)on	requiring	Android	permissions	from	na)ve	code.		
•  The	below	table	presents	the	top	five	most	popular	permissions	used,	how	many	apps	use	them,	and	

how	we	detected	its	use.	

•  we	can	draw	two	important	conclusions:		
1.  If	the	na)ve	code	is	separated	in	a	different	process,	it	is	necessary	to	give	some	permissions	to	the	

na)ve	code.	
2.  The	permissions	of	the	na)ve	code	can	be	more	strict	(less	permissive)	than	the	permissions	of	the	

Java	code.	
	



Java-Na)ve	Code	Interac)ons		
•  For	beker	understanding	na)ve	code	from	the	Java	code	of	the	apps,	they	have	measured	

the	number	of	interac)ons	per	millisecond	between	Java	and	na)ve	code,	i.e.,	the	number	
of	calls	to	JNI	func)ons,	calls	to	na)ve	methods,	and	Binder	transac)ons.	

•  The	mean	of	 interac)ons	per	millisecond	is	0.00142,	whereas	the	variance	 is	0.00003	and	
the	maximum	value	is	0.22.	Na)veGuard’s	performance	evalua)on	with	the	Zlib	benchmark	
shows	a	34.36%	run)me	overhead	for	9.81	interac)ons	per	millisecond	and	26.64%	for	3.96	
interac)ons	per	millisecond.	

•  Addi)onally,	 they	have	measured	the	number	of	bytes	exchanged	between	the	Java	code	
and	na)ve	code	per	second.	The	mean	of	bytes	exchanged	per	second	is	1,956.55	(1.91	KB/
s)	and	the	maximum	value	is	6,561,053.27	(6.26	MB/s).	

•  Only	11	apps	exchanged	more	than	1	MB/s.	
•  The	amount	of	data	exchanged	between	java	and	na)ve	code	would	not	incur	a	significant	

overhead.	



Usage	of	the	su	Binary	

•  To	 have	 great	 control	 over	 the	 system,	 the	
users	 need	 to	 perform	 roo)ng	 in	 order	 to	
perform	 few	 ac)ons	 such	 as	 uninstalling	 the	
pre-installed	apps.	

•  Some	of	 these	apps	use	 the	“-c”	argument	of	
su	 to	 specify	 a	 command	 to	 be	 executed	 as	
root.		

•  These	 ac)ons	 did	 not	 work	 properly	 during	
dynamic	 analysis,	 so	 we	 cannot	 obtain	 more	
informa)on	on	their	behavior.	



JNI	Calls	Sta)s)cs	
This	table	presents	the	types	of	JNI	func)ons	that	
were	used	by	the	apps	and	how	many	apps	used	
them.	

This	table	presents	what	groups	of	methods	from	
the	 framework	 were	 called,	 along	 with	 the	
amount	 of	 apps	 that	 called	 methods	 in	 each	
group.		



Binder	Transac)ons		

•  1.64%	(2,457)	of	the	apps	that	reached	na)ve	
code	 during	 dynamic	 analysis	 performed	
Binder	transac)ons.	

•  The	most	 common	 class	 remotely	 invoked	 by	
this	process	 is	 IServiceManager,	which	can	be	
used	to	list	services,	add	a	service,	and	get	an	
object	to	a	Binder	interface.	

•  All	apps	that	used	this	class	obtained	an	object	
to	a	Binder	interface	and	two	apps	also	used	it	
to	 list	 services.	 This	 data	 shows	 that	 using	
Binder	 transac)ons	 from	 na)ve	 code	 is	 not	
common.	



Usage	of	External	Libraries		
16.6%	(24,942)	of	the	apps	that	reached	na)ve	
code,	no	standard	library	was	used	by	a	great	
number	of	apps.	

Several	custom	libraries	were	used	by	more	than	
7.5%	of	the	apps	that	executed	na)ve	code.	



Security	Policy	Genera)on		

•  One	of	the	main	step	to	limit	the	possible	damage	that	na)ve	code	can	do	is	to	isolate	it	from	the	
Java	code	using	the	na)ve	code	sandboxing	mechanisms.	

•  Here	we	propose	to	use	the	dynamic	analysis	system	to	generate	security	policies	which	means	the	
normal	behavior	of	the	applica)ons.	

•  This	dynamic	analysis	has	two	modes:	
1.  Permissive	mode:	

	In	this	mode	the	system	would	log	and	report	the	usage	of	unusual	behavior.	
2.  Enforcing	mode:	
								The	system	would	block	the	execu)on	of	unusual	behavior	and	stop	the	applica)on.	
			



Impact	of	Security	Policies	

•  To	understand	the	impact	of	implementa)on	
they	analyzed	the	popularity	(lower	number	of	
installa)ons)	of	the	apps	whose	behavior	seen	
during	the	dynamic	analysis	would	be	blocked.	

•  Among	the	applica)ons	for	which	the	policy	
would	block	at	least	one	behavior	that	has	
been	executed	at	run)me,	1.87%	(51)	of	them	
have	more	than	1	million	installa)ons.	



Impact	of	Security	Policies	contd..	
•  They	iden)fied	three	types	of	suspicious	ac)vi)es	among	these	apps.	
1.   Ptrace:	

	 280	 apps	used	ptrace.	 276	of	 these	only	 call	 ptrace	 to	 trace	 itself	without	 checking	 the	
result.	Developers	do	this	on	purpose	because	app	cannot	be	traced	by	another	process.	
2. 	Modifying	Java	code:	

	Iden)fied	7	apps	that	modify	the	Java	sec)on	of	the	app	from	na)ve	code.	All	these	apps	
perform	this	ac)on	from	the	library	libAPKProtect.so.	 	It	harder	for	reverse	engineering	tools	
to	decompile	the	app.	
3. 	Fork	and	ino5fy:	
	 	 57	 apps	 were	 iden)fied	 that	 create	 a	 child	 process	 in	 na)ve	 code	 and	 use	 ino)fy	 to	
monitor	the	apps’	directory,	in	order	to	iden)fy	when	they	are	uninstalled	



Limita)ons	
1.  The	policies	that	the	tool	generate	might	not	be	complete	they	might	block	more	applica)ons	when	

adopted	 at	 large-scale,	 and	 the	 performance	 overhead	 of	 isola)ng	 na)ve	 code	 could	 be	 higher,	
using	a	more-sophis)cated	instrumenta)on	tool	could	possibly	improve	the	amount	of	na)ve	code	
behavior.		
	Deploying	the	automa)cally	generated	policies	in	a	na)ve	sandbox	with	repor)ng	mode	would	help	
	to	observe	the	behaviors	that	the	policies	would	block.	

2.  Another	 limita)on	 is	 that	 the	authors	 approach	 restricts	 access	 to	permissions	 from	na)ve	 code,	
but	it	s)ll	allows	the	na)ve	code	to	invoke	(some)	Java	methods.	This	would	dras)cally	reduce	the	
possibility	of	introducing	malicious	behaviors.	

3.  The	authors	are	not	completely	certain	that	there	are	no	malicious	apps	in	the	dataset	depending	
on	how	the	malware	works.	

4.  The	 tracing	 system	 slows	 down	 the	 execu)on	 of	 the	 apps	 by	 around	 10	 )mes.	 There	were	 only	
small	subset	of	apps	run	and	analyzed	i.e	177	apps.	



Related	Work	
	Large	Measurement	Studies:	
–  Viennot	et	al.	did	a	large	measurement	study	on	1,100,000	applica)ons	crawled	from	the	Google	Play	

app	 store.	 They	measured	 the	 frequency	with	which	Android	 applica)ons	make	use	of	 na)ve	 code	
components.	

–  Lindorfer	et	al:	They	analyzed	1,000,000	apps,	of	which	40%	are	malware.	Authors	used	Andrubis,	a	
publicly-available	analysis	system	for	Android	apps	that	combines	sta)c	and	dynamic	analysis.	

Applica5on	Analysis	Systems:	
–  Several	systems	have	already	been	used	in	this	paper	for	analysis.	

Protec5on	Systems:	
–  Fedler	 et	 al:	 proposed	 a	 system	where	 a	 root	 t	 exploits	 by	 preven)ng	 apps	 from	 giving	 execu)on	

permission	 for	 custom	 executable	 files	 and	 by	 introducing	 a	 permission	 related	 to	 the	 use	 of	 the	
System	class.	

Na5ve	Code	Isola5on:	
–  There	are	lot	of	systems	in	order	to	isola)ng	the	na)ve	code	Klinkoff	et	al.	[26]	focus	on	the	isola)on	

of	 .NET	 applica)ons,	 whereas	 Robusta	 [33]	 focuses	 on	 the	 isola)on	 of	 na)ve	 code	 used	 by	 Java	
applica)ons	

	
		

	

	



Conclusion	

•  Developers	 are	 allowed	 to	mix	 Java	 code	 and	 na)ve	 code	 enables	 developers	 to	
fully	 harness	 the	 compu)ng	 power	 of	mobile	 devices	 but	 this	 feature	 does	more	
harm	than	doing	good.	

•  Na)ve	 code	 sandboxing	 is	 the	 e	 correct	 approach	 to	 properly	 limit	 its	 poten)ally	
malicious	side-effects.	

•  This	 paper	 demonstrates	 an	 approach	 to	 automa)cally	 generate	 an	 effec)ve	 and	
prac)cal	na)ve	code	sandboxing	policy.		



Thank you 


