Going Native: Using a Large-Scale Analysis of
Android Apps to Create a Practical Native-Code
Sandboxing Policy

Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupe, Mario
Polino, Paulo de Geus , Christopher Kruegel, and Giovanni Vigna

Sudeep Nanjappa Jayakumar

Agenda

1. Whatis Sandboxing?

2. Introduction

3. Sandbox Security Relevance
4. Contributions

5. Background

6. Sandboxing Mechanisms
7. Analysis Infrastructure

8. Transitions

9. Evaluation & Insights

10. Usage of External Libraries
11. Security Policy Generation
12. Limitations

13. Related Work

14. Conclusion

Kz
RS

Introduction

 Google’s Android operating system currently enjoys the largest market share,
currently at 84.7%, of all current smartphone operating systems.

* The official app market for Android, the Google Play Store, has around 1.4 million
available apps.

 The native code has direct access to the memory of the running process, from this it
can completely modify and change the behavior of the Java code.

* An extensive analysis of the native code usage in 1.2 million Android apps. First the
static analysis was done on 446k apps using native code and then with the dynamic
analysis.

Kz
RS

What is Sandboxing?

 Sandbox is a security mechanism for separating running programs. It is often used
to execute untested or untrusted programs or code, possibly from unverified or

untrusted third parties, suppliers, users or websites, without risking harm to the
host machine or operating system.

A sandbox is implemented by executing the software in a restricted operating
system environment, thus controlling the resources (for example, file descriptors,
memory, file system space, etc.) that a process may use.

Kz
RS

Sandbox Security Relevance

* Least-Privilege: The native code of the app should have access only to what is
strictly required, thus reducing the chances the native component could extensively
damage the system.

 Compartmentalization: The native code of the app should communicate with the
Java part only using specific, limited channels, so that the native component cannot
modify, interact with, or otherwise alter the Java runtime and code in unexpected
ways.

» Usability: The restrictions enforced by the sandbox must not prevent a significant
portion of benign apps from functioning.

* Performance: The sandbox implementation must not impose a substantial
performance overhead on apps

Kz
RS

Contributions

1. A toolis developed to monitor the execution of the native components in android
applications and this is used to study the native code usage in the android.

2. The collected data is analyzed and actionable insights are provided in to how the

benign apps use the native code . Here the raw data is made available for the
community.

3. Finally the results are shown that eliminating permissions of native code is not
ideal as the policy would break the apps in the dataset.

Kz
RS

Background

To understand the analysis, it is necessary to review the android security mechanisms
on how native code is used in android systems, what damage it can cause and
previously proposed sandboxing mechanisms.

* Android Security Mechanisms

* Native Code

* Malicious Code

* Native Code Sandboxing mechanisms

Kz
RS

Sandboxing Mechanisms

Android Security Mechanisms:

 When apps are installed on an Android phone, they are assigned a new user (UID) and groups (GIDs)
based on the permissions requested by the app in its manifest.

* Apps must declare the permissions needed in the manifest, and at installation time the requested
permissions are presented to the user, who decides to continue or cancel the installation.

Native Code:

There are four ways in which the Java code of an Android app can execute native code.

1. Exec methods
2. Load methods
3. Native methods
4. Native activity

Kz
RS

Sandboxing Mechanisms contd...

Malicious Native code:

* Malicious apps can use native code to hide malicious actions from static analysis of the Java portion
of the app.

e Attackers can directly call system calls to execute root exploits is by exploiting vulnerabilities in
native code used by benign apps.

Native Code Sandboxing Mechanisms:

e Several approaches have been proposed to sandbox native code execution. For instance NativeGuard
and Robusta.

* These approaches move the execution of native code to a separate process.

« Two complementary goals are obtained: (1) the native code cannot tamper with the execution of the
Java code and (2) different security constraints can be applied to the execution of the native code.

Kz
RS

Analysis Infrastructure

* Design and implementation of a system that dynamically analyzes android
applications is used to study the native code.

* Also the native code sandboxing policy is generated automatically.

* Analysis consists an instrumented emulator which records all the events and
operations executed within the native code such as invoked syscalls and native to

java communication.
* Android system 4.3 is used for the analysis.

Kz
RS

Analysis Infrastructure contd...
Static Prefiltering:

* Performing dynamic analysis on all the apps would take more time, so the static analysis was used to
filter the apps which had native method, native activity, having a call to exec method, having a call to
load method or having an ELF file inside the APK.

 Androguard tool is used for the static analysis, and identify the native methods, it was searched in
the dalvik bytecode with the modifier named “native”.

* Native activities were identified by two methods:

. TABLE 1. RESULTS OF THE STATIC ANALYSIS.
1. Looking for a NativeActivity in the manifest. ATIC ARA
2. Looking for classes declared in the Dalvik Apps Type
i . 267,158 Native method
bytecode that extend NativeActivity. 42.086 Native activity
288,493 Exec methods
242,380 Load methods
221,515 ELF file

446,562 At least one of the above

Kz
RS

Analysis Infrastructure contd...
Dynamic Analysis System:

» After identifying the which apps use the native code, now we need to understand how apps use the
native code and for this we use dynamic analysis to monitor several types of actions performed by
the apps.

* This includes system calls, JNI calls, Binder transactions, calls to Exec methods, loading of third-party
libraries, calls to native activities’ native callbacks, and calls to native methods. The system calls were
captured using the strace tool.

* To monitor JNI calls, calls to native methods, and library loading, the modification to “libdvm” is
done.

* Also monitor the amount of data exchanged between native and Java code is done where measuring
the amount of data passed in parameters of calls from native code to Java methods and vice versa,
as well as the size of the returned value.

e Also the size of the data is captured to set fields in java objects.

Kz
RS

Transitions

< Loads liorary TABLE . JNI METHODS THAT CAUSE A TRANSITION FROM NATIVE
Calls native mathod TO JAVA. <TYPE> CAN BE THE FOLLOWING: OBJECT; BOOLEAN; BYTE;
< CHAR; SHORT; INT; LONG; FLOAT; DOUBLE; VOID.
< Uses native activity
Shared library Salls Java rasihod Java part of App Call<TYPE>Method
> CallNonVirtual <TYPE>Method
Calls class constructor > Call< TYPE >MethodA
Static class initializer > CallNonVirtual <TYPE>Method A
Call<TYPE>MethodV
CallNonVirtual <TYPE>MethodV
CallStatic< TYPE>Method
Exocutable ELF | Executes file CallStat@c <TYPE>MethodA
file CallStatic< TYPE>MethodV
NewObject
NewObjectV
NewObjectA

Fig. 1. Possible transitions between native code and Java.

Kz
RS

Transitions

< Loads liorary TABLE . JNI METHODS THAT CAUSE A TRANSITION FROM NATIVE
Calls native mathod TO JAVA. <TYPE> CAN BE THE FOLLOWING: OBJECT; BOOLEAN; BYTE;
< CHAR; SHORT; INT; LONG; FLOAT; DOUBLE; VOID.
< Uses native activity
Shared library Salls Java rasihod Java part of App Call<TYPE>Method
> CallNonVirtual <TYPE>Method
Calls class constructor > Call< TYPE >MethodA
Static class initializer > CallNonVirtual <TYPE>Method A
Call<TYPE>MethodV
CallNonVirtual <TYPE>MethodV
CallStatic< TYPE>Method
Exocutable ELF | Executes file CallStat@c <TYPE>MethodA
file CallStatic< TYPE>MethodV
NewObject
NewObjectV
NewObjectA

Fig. 1. Possible transitions between native code and Java.

Kz
RS

Evaluation & Insights

* Analysis is limited to 2 minutes to keep it feasible and Google Monkey to stimulate the app with
random events, and we then automatically generated a series of targeted events to stimulate all
activities, services, and broadcast receivers defined in the application.

* During dynamic analysis, 33.6% (149,949) of the apps identified by static analysis as potentially
having native code actually executed the native code.

] . TABLE I[II. THE NUMBER OF APPS THAT EXECUTED EACH TYPE OF
e Also they have manually analyzed statically & dynamically, NATIVE CODE

20 random apps that were having native code. 8 apps were

unreachable from the java code and the remaining apps 7/;})71)688 NativTeyrI;eethod
too complex to manually inspect. 19,164 Native activity
132,843 Load library
27701 Call executable file (27,599 standard,
’ 148 custom and 46 both)
149,949 At least one of the above

Kz
RS

Native code Behavior

* The actions were split into those performed by shared TABLETY: OVERVIEW OF ACTIONS PERFORMED BY CUSTOM SHARED
libraries (including those performed during library loading, Writing log messages
native methods, and native activities) and those that are Performing memory management system calls, such as mmap

and mprotect

the result of invoking custom, executable, and binaries Reading files in the application directory
Calling JNI functions

throu gh Exec methods. Performing general multiprocess and multithread related system
. . calls, such as fork, clone, setpriority, and futex
° They have aISO presented the actions performed using Reading common files, such as system libraries, font files, and
. . . “/dev/random”
Standard blnarleS (I'e'l not Created by the app), bUt Performing other operations on files or file descriptors, such as
in this case based on their names and parameters, peak, dup, and readlink .
erforming operations to read information about the system,
instead of |00king at the System calls. such as uname, getrlimit, and reading special files (e.g.,

“/proc/cpuinfo” and “/sys/devices/system/cpu/possible™)
Performing system calls to read information about the process
or the user, such as getuid32, getppid, and gettid
Performing system calls related to signal handling

Performing cacheflush or set_tls system calls or per-
forming nanosleep system call

Reading files under “/proc/self/” or “/proc/<PID>/", where PID
is the process’ pid

Creating directories

Native code Behavior

TABLE V. TOP FIVE MOST COMMON ACTIONS PERFORMED BY APPS IN
NATIVE CODE, THROUGH SHARED LIBRARIES (SL) AND CUSTOM
BINARIES (CB). FOR THE INTERESTED READER, WE REPORT THE FULL
VERSION OF THIS TABLE IN [1].

SL CB

Description
3,261 72 ioctl system call
1,929 39 Write file in the app’s directory
1,814 35 Operations on sockets
1,594 5 Create network socket
1,242

144 Terminate process or thread group

TABLE VL TOP FIVE MOST COMMON ACTIONS PERFORMED BY APPS
THAT CALLED STANDARD BINARIES IN THE SYSTEM. FOR THE
INTERESTED READER, WE REPORT THE FULL VERSION OF THIS TABLE
IN[1].

Apps Description

19,749 Read system information

3,384 Write file in the app’s directory or in the sdcard
3,362 Read logcat

1,041 List running processes

861

Read system property

Native code Behavior

 Around 3,669 apps that perform an action requiring Android permissions from native code.

* The below table presents the top five most popular permissions used, how many apps use them, and
how we detected its use.

TABLE VIIL THE FIVE MOST COMMON (BY NUMBER OF APPS) ACTIONS IN NATIVE CODE THAT REQUIRE ANDROID PERMISSION. FOR THE INTERESTED
READER, WE REPORT THE FULL VERSION OF THIS TABLE IN [1].

Apps Permission Description
1,818 INTERNET Open network socket or call method java.net .URL.openConnection
1,211 WRITE_EXTERNAL_STORAGE Write files to the sdcard
1.211 READ_EXTERNAL_STORAGE Read files from the sdcard
132 READ_PHONE_STATE Call methods getSubscriberId, getDeviceSoftwareVersion,
getSimSerialNumber or getDeviceld from class
android.telephony.TelephonyManager or Binder transaction to call
com.android.internal.telephony.IPhoneSubInfo.getDeviceld
79 ACCESS_NETWORK_STATE Call method android.net .ConnectivityManager.getNetworkInfo

 we can draw two important conclusions:

1. If the native code is separated in a different process, it is necessary to give some permissions to the
native code.

2. The permissions of the native code can be more strict (less permissive) than the permissions of the
Java code.

Java-Native Code Interactions

* For better understanding native code from the Java code of the apps, they have measured
the number of interactions per millisecond between Java and native code, i.e., the number
of calls to JNI functions, calls to native methods, and Binder transactions.

* The mean of interactions per millisecond is 0.00142, whereas the variance is 0.00003 and
the maximum value is 0.22. NativeGuard’s performance evaluation with the Zlib benchmark
shows a 34.36% runtime overhead for 9.81 interactions per millisecond and 26.64% for 3.96
interactions per millisecond.

* Additionally, they have measured the number of bytes exchanged between the Java code
and native code per second. The mean of bytes exchanged per second is 1,956.55 (1.91 KB/
s) and the maximum value is 6,561,053.27 (6.26 MB/s).

* Only 11 apps exchanged more than 1 MB/s.

 The amount of data exchanged between java and native code would not incur a significant
overhead.

Kz
RS

Usage of the su Binary

* To have great control over the system, the TABLE VI TOP FIVE MOST COMMON TYPES OF COMMAND PASSED
_ , WITH THE “-C” ARGUMENT TO 5U, SEPARATED BETWEEN THE APPS THAT
users need to perform rooting in order to MENTION THEY NEED ROOT PRIVILEGES IN THEIR DESCRIPTION OR NAME
pe rform feW actlons Such as unlnsta”ing the AND THE ONES THAT DO NOT MENTION IT. FOR THE INTERESTED READER,
_ WE REPORT THE FULL VERSION OF THIS TABLE IN [1].
pre-installed apps.
* Some of these apps use the “-c” argument of Does not Does o
. Mention Mention Description
su to specify a command to be executed as Root Root
root. 12 10 Custom executable (e.g.,
. These actions dld not WOFk properly durlng | " Eeg;g[/dala/datahom test.etd062.ct/files/occt.sh)
dynamic analysis, so we cannot obtain more 2 12 Read system information
information on their behavior. 1 8§ Change permission of file in app’s direc-
tory
1 7 Remove file in app’s directory

JNI Calls Statistics

This table presents the types of JNI functions that ~ This table presents what groups of methods from

were used by the apps and how many apps used the framework were Ca“ed, a|0ng with the
them. amount of apps that called methods in each
group.
TABLE IX. GROUPS OF INI CALLS USED FROM NATIVE CODE. TABLE X. TOP 10 GROUPS OF JAVA METHODS FROM THE ANDROID
FRAMEWORK CALLED FROM NATIVE CODE.
Apps Description —
94,543 Get class or method identifier and class reference Apps Description
71,470 Get or destroy JavaVM, and Get JNIEnv 7423 Get path to the Android
53,219 Manipulation of String objects ’ package associated with the context of the caller
49,321 Rggister nat@ve meEhod 6.896 Get class name
45,773 Manipulate object reference 5,499 Manipulate data structures
‘31 ; gg? Ttgeﬁdj mamp"{‘;‘"g’“ 4,082 Methods related to cryptography
. all Java metho : .
19.372 Manipulate arrays 3,817 Manipulate native types
18.601 Manipulate exceptions 3,769 Read system information
14,330 Create object instance 3,018 Audio relaFed methpds
6,918 Modify field of an object 2,070 ~ Read app information
2.203 Manipulate direct buffers 1,192 String manipulation and encoding
47 Memory allocation 575 Input/output related methods
Enter or exit monitor 483 Reflection

Ksz/

e

Binder Transactions

e 1.64% (2,457) of the apps that reached native
code during dynamic analysis performed TABLE XI. Top gva MOST COMMON CLASFSES OF THE METHODS
, : INVOKED THROUGH BINDER TRANSACTIONS. FOR THE INTERESTED
Binder transactions.
READER, WE REPORT THE FULL VERSION OF THIS TABLE IN [1].

e The most common class remotely invoked by

this process is IServiceManager, which can be Apps Class
used to list services, add a service, and get an 2427 android.os.IServiceManager
object to a Binder interface. 740 android.media.[AudioFlinger

, : : 725 android.media.IAudioPolicyService
* All that used this cl btained bject
Ll s U D BRLEINER Gl Gl 327 android.gui.IGraphicBufferProducer

to a Binder interface and two apps also used it A

,) _] 303 android.gui.SensorServer
to list services. This data shows that using
Binder transactions from native code is not
common.

Kz
RS

Usage of External Libraries

16.6% (24,942) of the apps that reached native
code, no standard library was used by a great
number of apps.

Several custom libraries were used by more than
7.5% of the apps that executed native code.

TABLE XII. TOP 10 MOST USED STANDARD LIBRARIES. TABLE XIII. ~ Top 10 MOST USED CUSTOM LIBRARIES.
Apps Name Description Apps Name Description
2,646 libOpenSLES.s0 Audio input and output 17,343 libCore.s0 Used by Adobe AIR
> 645 libwilhelm.so Mul(tlime(cllia output 16,450 libmain.so Common name
’ - and audio input . . .
349 libpixelflinger.so Graphics rendering 13,556 llbsl!port_shared.so C++ standard libraries
347 libGLES_android.so Graphics rendering] 1,486 libcorona.so Part of the Corona SDK, a devel-
183 libGLESVI_enc.so E“COds(f)nf::; a(;fs 1.1 opment platform for mobile apps
e 11,480 libalmixer.so Audio API of the Corona SDK
Memory allocation ’ -
183 gralloc.goldfish.so for graphics 11,458 libmpg123.50 Audio library
182 libOpenglSystemCommon.so (fl‘l‘;‘dmg; (‘)‘gfn‘g]‘f 11,090 libmono.so Mono library, used to run .NET
. Encoder for GLES 2.0 on Android
182 libGLESv2 _enc.so . .
. dcon;mandsd . 10,857 liblua.so Lua interpreter
. ncoder 1or renderin o .
(181 lib_renderControl_enc.so st gl 10,408 libjnluas.1.s0 Lua interpreter
N2/ /

e

Security Policy Generation

* One of the main step to limit the possible damage that native code can do is to isolate it from the
Java code using the native code sandboxing mechanisms.

 Here we propose to use the dynamic analysis system to generate security policies which means the
normal behavior of the applications.

e This dynamic analysis has two modes:
1. Permissive mode:

In this mode the system would log and report the usage of unusual behavior.
2. Enforcing mode:

The system would block the execution of unusual behavior and stop the application.

Kz
RS

Impact of Security Policies

 To understand the impact of implementation S
they analyzed the popularity (lower number of
installations) of the apps whose behavior seen
during the dynamic analysis would be blocked.

« Among the applications for which the policy
would block at least one behavior that has
been executed at runtime, 1.87% (51) of them
have more than 1 million installations.

0.6

0.4

0.2

1.87 % => 1M+

0.0

| | | I

1e+00 1e+02 1e+04 1e+06 1e+08
: '\s A z

e

Impact of Security Policies contd..

* They identified three types of suspicious activities among these apps.
1. Ptrace:

280 apps used ptrace. 276 of these only call ptrace to trace itself without checking the
result. Developers do this on purpose because app cannot be traced by another process.

2. Modifying Java code:

Identified 7 apps that modify the Java section of the app from native code. All these apps

perform this action from the library libAPKProtect.so. It harder for reverse engineering tools
to decompile the app.

3. Fork and inotify:

57 apps were identified that create a child process in native code and use inotify to
monitor the apps’ directory, in order to identify when they are uninstalled

Kz
RS

Limitations

1. The policies that the tool generate might not be complete they might block more applications when
adopted at large-scale, and the performance overhead of isolating native code could be higher,
using a more-sophisticated instrumentation tool could possibly improve the amount of native code
behavior.

Deploying the automatically generated policies in a native sandbox with reporting mode would help
to observe the behaviors that the policies would block.

2. Another limitation is that the authors approach restricts access to permissions from native code,
but it still allows the native code to invoke (some) Java methods. This would drastically reduce the
possibility of introducing malicious behaviors.

3. The authors are not completely certain that there are no malicious apps in the dataset depending
on how the malware works.

4. The tracing system slows down the execution of the apps by around 10 times. There were only
small subset of apps run and analyzed i.e 177 apps.

Kz
RS

Related Work

Large Measurement Studies:

— Viennot et al. did a large measurement study on 1,100,000 applications crawled from the Google Play
app store. They measured the frequency with which Android applications make use of native code
components.

— Lindorfer et al: They analyzed 1,000,000 apps, of which 40% are malware. Authors used Andrubis, a
publicly-available analysis system for Android apps that combines static and dynamic analysis.

Application Analysis Systems:

— Several systems have already been used in this paper for analysis.

Protection Systems:

— Fedler et al: proposed a system where a root t exploits by preventing apps from giving execution
permission for custom executable files and by introducing a permission related to the use of the

System class.

Native Code Isolation:

— There are lot of systems in order to isolating the native code Klinkoff et al. [26] focus on the isolation
of .NET applications, whereas Robusta [33] focuses on the isolation of native code used by Java

N
e

Conclusion

* Developers are allowed to mix Java code and native code enables developers to
fully harness the computing power of mobile devices but this feature does more

harm than doing good.

* Native code sandboxing is the e correct approach to properly limit its potentially
malicious side-effects.

* This paper demonstrates an approach to automatically generate an effective and
practical native code sandboxing policy.

Kz
RS

Thank you

