
Cache-based attack on AES

Mikaël Fourrier



2

Contribution of this paper

● Get the secret key from AES in 3s + 3min
● Very weak assumptions
● No known plaintext needed
● No special rights needed, only to be able to 

spawn and control threads



3

Side-channel attack

● Goal: attack the implementation instead of 
brute force or theoretical weaknesses
– Timing attacks

– Power-monitoring attacks

– Electromagnetic attack

– Acoustic cryptanalysis



4

CPU Cache

● The CPU is way faster than the RAM, so we 
add caches so that we don't have to interact 
with the RAM
– The caches are divided in blocks (64-128 bytes)

– L1 ~10kb

– L2 ~1M

– L2 14x slower than L1

– RAM 20x slower than L2, 200x slower than L1



5

AES



6

AES implementation

● Exploit redundancy in the matrix 
multiplications to speedup the calculation

● Massive use of precomputed tables

→ If we know which entry is use when, we 
can deduce the private key

→ Each round we get a probability that a byte 
sequence is part of the key



7

Main idea

1) Fill L1 with known data

2) Let the target execute one table load (will be 
a miss)

3) Detect which cache line has been changed

4) Deduce which part of the table has been 
loaded

5) Repeat!



8

Completely fair scheduler

● Linux process scheduler
● Goal: as with n processes executing on n 

processors at 1/n the speed.

→ Execute first the process which had less 
execution time



9

The attack

● DoS on CFS: hundreds of threads + one 
dummy thread



10

The attack - 2

● Read a big array, if response time above a 
threshold → cache miss → the target process 
used this cache line



11

Neural networks

● One neuron has 
multiple inputs and 
one output

● Each input has an 
associated weight

● The networks learns 
by changing the 
weights



12

Post-processing

● Use of two neural 
networks:
– Noise reduction (right)

– Estimation on the 
number of memory 
access at t



13

Results

● 250 threads, 100 encryptions
– 10ms → 2.8s

● Noise reduction: 21s, normal process
● Preparing key search by constructing a 

probability table: 63s
● Key search: 30-300s

→ 3 minutes to find the key

→ 60kB to transfer for post-processing



14

Countermeasures (general)

● Don't use the cache
– Not possible in real life

● Don't let process access high-res timers
– A lot of legitimate apps use it

● Cache preloading by the OS
● Mark table as uncachable
● Limit the minimum time between context 

switch



15

Contermeasures (AES)

● Use more efficient instructions to reduce 
table size

● Use hardware-supported encryption (Intel 
AES-NI)



16

References

● Paper: https://eprint.iacr.org/2010/594.pdf
● Wikipedia: 

https://en.wikipedia.org/wiki/Artificial_neural
_network

https://eprint.iacr.org/2010/594.pdf
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network

