Mikaél Fourrier

Contribution of this paper

* Get the secret key from AES in 3s + 3min
* Very weak assumptions
* No known plaintext needed

* No special rights needed, only to be able to
spawn and control threads

—

Side-channel attack

 Goal: attack the implementation instead of
brute force or theoretical weaknesses

- Timing attacks

- Power-monitoring attacks
- Electromagnetic attack

— Acoustic cryptanalysis

—

CPU Cache

 The CPU is way faster than the RAM, so we

add caches so that we don't have to interact
with the RAM

- The caches are divided in blocks (64-128 bytes)
- L1 ~10kb

- L2 ~1M

- L2 14x slower than L1

- RAM 20x slower than L2, 200x slower than L1

—

P e
1/16B
0 N I~
Bes o
b = T 2
N -8 e N
S w I K
- Il il

|) = (X0 X; X; X3) ShiftRows(X)

= e -
Irwm.wwb
0 & < M
88 88

L4
L5
L6
X7

Lo
I
Z2
L3

D=

) 03()2)

™ = 0

— & AN

oY N -

N o~ —

|

Mes(X

MixColumns(s(X))

AES implementation

* Exploit redundancy in the matrix
multiplications to speedup the calculation

 Massive use of precomputed tables

- If we know which entry is use when, we
can deduce the private key

— Each round we get a probability that a byte
sequence Is part of the key

—

Main idea

1) Fill L1 with known data

2) Let the target execute one table load (will be
a miss)

3) Detect which cache line has been changed

4) Deduce which part of the table has been
loaded

5) Repeat!

—

Completely fair scheduler

* Linux process scheduler

» Goal: as with n processes executing on n
processors at 1/n the speed.

— Execute first the process which had less
execution time

—

The attack

e DoS on CFS: hundreds of threads + one
dummy thread

tsleep twakeup
[]

Time . . =
measure _program timer.
Thread i accesses| busywait |
: measure
Thread i+]1 ~ =--nmmmmmmmmmmmmmmmmmmmmmmmmde e accesses

The attack - 2

 Read a big array, if response time above a
threshold - cache miss - the target process
used this cache line

Neural networks

Hidden

e One neuron has
multiple inputs and
one output

 Each input has an
associated weight

 The networks learns
by changing the
weights

Post-processing

» Use of two neural [=
networks: = M T
e i e
- Noise reduction (right) = M
- Estimation on the | -t
number of memory (a) Input of the neural network.
access at't A

L
—_ |

} -1

(b) Output of the neural network. ﬁ

» 250 threads, 100 encryptions
- 10ms - 2.8s
* Noise reduction: 21s, normal process

* Preparing key search by constructing a
probability table: 63s

* Key search: 30-300s
- 3 minutes to find the key
— 60kB to transfer for post-processing

ﬂ

Countermeasures (general)

 Don't use the cache
- Not possible in real life

 Don't let process access high-res timers
- Alot of legitimate apps use it

 Cache preloading by the OS

 Mark table as uncachable

e Limit the minimum time between context
switch

ﬁ

Contermeasures (AES)

e Use more efficient instructions to reduce
table size

 Use hardware-supported encryption (Intel
AES-NI)

References

 Paper: https:/leprint.iacr.org/2010/594.pdf

» Wikipedia:
https:/len.wikipedia.org/wiki/Artificial_neural
_hetwork

https://eprint.iacr.org/2010/594.pdf
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network

