TaintART: A Practical Multi-level Information-Flow
Tracking System for Android RunTime

Mingshen Sun, Tao Wei, John C.S. Lui

Sudeep Nanjappa Jayakumar

Agenda

* Android Basics

* Introduction

e Contributions

 SDK Downloads — Google

* Background

* Environments

e Comparison — Android Dalvik & ART Environment

* System Design - TaintART

* Taint tag Storage

* Taint Propagation Logic

* Implementation

* Case Study

* Macrobenchmarks and Microbenchmarks

 Comparison of instruction numbers for different types
Limitations & related work

KWW

Android Basics

What is Android?

e Free, open source mobile platform
o Source code at http://source.android.com

e Any handset manufacturer or hobbyist can customize

e Any developer can use
o SDK at http://developer.android.com

Kz
RS

Background

Android Overview:
e Android OS is based on the Linux Kernel.

 Android has middleware called application framework which is based on database and App runtime
libraries.

* The application framework provides various APIs for apps developers - activity management, content
management, and view system.

* Android apps are mainly written in java, but to enhance the performance, developers can embed C/
C++ and use Java Native Interface (JNI) to interact with apps and framework APIs.

 Each app runs in an isolated environment. Apps can also communicate with other apps and services
through a specific inter-process communication mechanism called the binder.

Kz
RS

Introduction

* TaintDroid were designed for the legacy Dalvik environment used for Dynamic taint analysis for
Android apps.

e It customizes Android runtime (Dalvik Virtual Machine) to achieve taint storage and taint
propagation.

* Latest Android version no longer support TaintDroid because of the compatibility and performance
issues.

* TaintART — Dynamic multi level information flow tracking system.
e Supports the latest Android runtime environments.

* TaintART utilizes processor registers for taint storage. Compared to TaintDroid which needs at least
two memory accesses

* Multi-level taint analysis technigque to minimize the taint tag storage.
 Multi level privacy enforcement is done to protect sensitive data from leakage.

Kz
RS

Contributions
* Methodology:

Efficiently track dynamic information flows on the Android mobile operating system with ahead-of-
time compilation strategy. Here the multi level analysis is done on the optimized code than doing on the

original bytecode of the application.

* Implementation:

TaintART is implemented on Android Marshmallow. TaintART can track multilevel information
flows within the method, across the method and also data transmitted between the different apps.

Kz
RS

Contributions Contd...

* Performance:

Macrobenchmarks, microbenchmarks and compatibility test are performed on the TaintART. It also

achieves 2.5 % and 99.7 % faster for overall performance compared to quick compiler backend ART
runtime and Dalvik VM in Android 4.4.

TaintART can analyze apps without compatibility issues.

* Application to privacy leakage analysis:

Privacy leakage issues have been addressed on the popular apps in Android 6.0.

Kz
RS

SDK Downloads - Google

= &= Target SDK Version (Oct. 2015) ==@==: Minimum SDK Version (Oct. 2015)
i Target SDK Version (Feb. 2016) =@ Minimum SDK Version (Feb. 2016)

[[. [[y [[[[[
0.4 P
S % =1 2
S = 2[R
0.3 it TI- I
2 ol 2 2 Bl]
é" :: = = =) ;
= |
é 0.2 | I “ o
S | 1
o i “
' [
0.1 |— 1 L |
' [
| [
' 1
= = \
0_ > 4 .
| | |
1 2 3 4 5 6 7 8,9

|
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Android 2.3 4.0 4.4 5.0 6.0

Android SDK Version

Environments

1. Dalvik Environment:
— Dalvik adopts virtual machine interpretation strategy at runtime.

— Dexopt tool will optimize original dex bytecode and at runtime, Dalvik virtual machine will
interpret bytecode and execute architecture specific native code.

— Dalvik VM maintains an internal stack for local variables and arguments.

2. ART Enviroment:
— First introduced as experimental environment with Android 4.4

— Replaced Dalvik and was made as default environment
— ART adopts ahead-of-time (AOT) compilation strategy instead of virtual machine interpretation.

— dex2oat tool will directly compile dex bytecode into native code during app’s installation and
then store as an oat file.
— Dex2oat compiler performs multiple times to achieve better performance.

Kz
RS

Comparison — Android Dalvik & ART Environment

*.java = pm-------- Tt e ey ,
f—— optimization ———i k— runtime —i

source code . optimized |, ,nch Dalvik
dexopt [|
\/r_\m g dex bytecode Virtual Machine

= X \/_\
javac/dx Dalvik .odex

dex bytecode k———— compilation —— k— runtime —i

_/———\ : . I
\ compiled launch '
classes.dex P dex2oat | pative code > ART Runtime E
: _/"\ i
 ART .oat !

Kz
RS

System Design - TaintART

e TaintART utilizes dynamic taint analysis technique and can track data by inserting tracking logic.

* TaintART employs a multi-level taint tag methodology to minimize taint storage so that tags can be
stored in processor registers for fast access.

* ART compiler is customized to retain the original ahead of time organizations.
* TaintART’s multilevel data tracking strategy is used for policy enforcement on data leakage.

* In dynamic taint analysis, sensitive data is targeted at any sensitive function called taint source and
taint tag will be labeled on the sensitive data for tracking.

* When the data is copied or transformed to another place, its taint tag will propagate to the new
place.

Kz
RS

System Design - TaintART

* The taint tag status for tracking data will be stored in taint tag storage.
e |If any tainted data leaves the system at some specified functions called taint sinks.

Installation | App — — — | Native
Stage < :,... Code

Runtime 3 .
Stage ,

Taint tag Storage

* Built on Google Nexus 5 — 32 bit ARM platform.
e 16 CPU registers, each with 32 bits.
e Register R5 is reserved for taint storage .

S15 ... S4 53 S2 S1 SO R15 « R4 R3 R2 R1 RO * Register allocator of TaintART will ensure R5 is not
RS |0 [lO]0fofL]2fol..|Lf{olo]L1]0 assigned for other purposes such as variable storage.

* First sixteen bits (from bit O to bit 15) will be used for
storing taint tags of sixteen registers (from RO to
R15).

 The remaining sixteen bits are used for storing taint
tag of floating point registers (from SO to S15).

floating-point registers regular registers

Kz
RS

R5

R5

R12 aee

R12 ‘e

R5

Figure 6: Taint tag propagates from R1 to RO for

I

. 87 6 54 3 210

- o]ofo]ofr]ofo|1]o] 3

3

- ofofofo]1]oof1]0]

..
2

oJoJofofofofofafo]

2

ofoJoJolo]oolo]1] "

..
3

- oflo]ofof2]o]of2]1]

ORR

the MOV RO, R1 instruction.

Ky

e

BIC

AND

ORR

Taint Propagation Logic

clear dest bit
R5, R5, #1

mask tainted bit
R12, R5, #2

shift right (or left) 3)
R12, R12, LSR #1 ‘

merge tainted bits

2= (4)
R5, R5, R12 :

R5, R5, R12, LSR #1 (3')

TaintART introduces much less instructions on
handling the taint status changes.

There are two registers involved R5 as the taint
storage register & R12 register for the temporary
usage.

Involves 4 steps: clear destination bit, masking
tainted bit, shifting bits, and merging tainted bits.

TaintART needs only three data processing
instructions without memory access to efficiently
propagate a taint label.

This will be good to track the runtime and the
performance impacts.

Implementation

Taint sources and sinks:

* TaintART can also be used to enforce policy on sensitive data leakage.

* Four types of data from fifteen sources are tracked and it is categorized in to device identity, sensor
data, sensitive content and location data.

* Taint source logic is placed in corresponding classes to track these data.

* When it comes to device identity apps can acquire telephony data by sending the request to
telephony manager and in return the taint source logic will attach a tag in the binder parcel.

* |ocation data and sensitive content such as messages, contact lists and call logs are categorized in the
third level. These data are considered as level three data and as most sensitive data.

Kz
RS

Taint sources and privacy leakage levels

Table 2: Taint Sources and Privacy Leakage Levels

Level Leaked Data Source Class/Service
0 (00) No Leakage N/A N/A
IMSI TelephonyManager
IMEI TelephonyManager
1 (01) Device Identity P 4 €
ICCID TelephonyManager
SN TelephonyManager
Accelerometer SensorManager
Sensor Data
Rotation SensorManager
2 (10
(10) GPS Location LocationManager
Location Data Last Seen Location LocationManager
Network Location LocationManager
SMS ContentResolver
MMS ContentResolver
Contacts ContentResol
3 (11) Sensitive Content ontacts when ver
Call log ContentResolver
File content File
Camera Camera
Microphone MediaRecorder

K2/

Implementation

Taint Analysis Interface:

 Two basic interfaces can be developed for taint analysis.

* addTaint() & getTaint() — These can be used to update taint tag of a specific local variables or objects
and inspect taint tag later.

e These two inter

* faces are implemented in order to achieve better performance.

Implementation & Deployment

* The prototype of TaintART is implemented on Android 6.0.1 Marshmallow for Nexus 5.
 ART compiler and ART runtime sources are customized to implement taint tag propagation.

* Binder related sources are also customized in Android framework.

* They provide customized binary and libraries such as dex2oat, libart.so and libart-compiler.so

* Since the code base of ART environment is stable after Android 5.0, the implementation is generic
for Android 5.0 and 6.0 versions.

* Analysts can overwrite our customized binary and libraries to a target device with root privilege.
There is no need of reinstalling the customized systems from scratch.

Kz
RS

Case Study

Experimental Setup — TaintDroid is downloaded and compiled which is based on Android

4.3.
— TaintART is run on Android 6.0.1 & apps used in the case study were downloaded from the

Google play in May 2016.

Privacy Tracking — Popular apps were tested and potential privacy leakage was checked.
— They manually interacted with each app in TaintDroid and TaintART and recorded the reports of

privacy leakage.

Kz
RS

Privacy Leakage Analysis

Table 3: Privacy Leakage Analysis on Popular Apps.

App Name Version Min/Target TaintDroid Result (Error Message) Taint ART Result
SDK
Taobao 5.7.2 14/23 Some functions are broken: “cannot find 2: device identity, sensor data, location data
method” in config error
Alipay 9.6.6.051201 15/23 Cannot login: “It is crowed” error 2: device identity, sensor data, location data
JD.COM 5.1.0 14/14 Device identity and accelerometer leakage 2: device identity, sensor data, location data
Facebook 77.0.0.20.66 21/23 Cannot install: the minimum SDK is Android 1: device identity
5.0
Skype 6.34.0.715 15/23 Device identity leakage 1: device identity
Instagram 8.1.0 16/23 Device identity leakage 1: device identity
Spotify 5.3.0.995 15/23 No leakage 0: no leakage
Amazon Shopping 6.6.0.100 11/23 No leakage 0: no leakage

Case Study

PO“CV Enforcement — since TaintARt supports latest Android runtime it is easy to deploy the
policy enforcement.

- Here users can pre-define multi-level policy rules.

- For each level users can define different policies.

®
. . TaintART Alert
Table 4: Privacy Enforcement Policy.
Lo . ‘.fl,%?l\] TaintART Alert 24 PM Apolication:
Level Description of Enforcement Policy & Level 2 Privacy Leakage L
com.1aocoao.taocbao
~) Destination
0 N/A o) TEMART Alert Network: 205.204.104.233
W Level 2 Privacy Leakage .
Privacy Leakage Level
1 record events 1 (device identity)
USB debugging connected 2 (sensor data and location data)
2 record events, alert users and rewrite sensitive information Touch to disable USB debugging Details
POST /amdc/mobileDispatch?
3 record events, alert users and prevent accesses [_"é:};';'L)’_;;l”r:‘fhpi_l“;?Z,t_fé;ﬁt;ﬂ eeldees
USB for charging WTTP/1.1 e me
Touch for more options Host: amdc.m.taobao.com
Content Type: application/x-www-form
urlenc 5@ IF-8

— : ea se .
— Connection: e
o—
Accep nce g Bz1p
User-Agent: Dalvik/
s z Andraid £ N 1 Maviie § Rind U
m

Macrobencmarks

* TaintART is a general framework that can be used by end-users to protect their
privacy.

e Several macrobenchmarks were performed to measure the overhead for normal
usage of the applications.

Table 5: Macrobenchmark Results.
Original (with Opti-

Macrobenchmark Name s Taint ART
(ms) mizing Backend)

App Launch Time 348.2 370.3
App Installation Time 1680.5 1886.3

Contacts Read/Write 7.0/9538.5 8.4/9655.2

Microbenchmarks

Compiler Benchmarks — By adopting the TaintART the compilation time is
increased by 336.076 milliseconds to 403.064 milliseconds and introduces about 19.9

% overhead.
- The below figure illustrates the compilation time for 80 built-in apps.

| | | | | | | |

——e—— Original

3,000 i I -------- TaintART |-

“'“3‘\'&_.&?"
P
-]

Compilation Time (milliseconds)

0 20 40 60 80
Index of Built-in Apps

2
A7
r

Comparison of instruction numbers for different types

[] 1. Memory access instructions [] IL Data processing instructions [] IIL. Multiply instructions e The total number of instructions increases about 21
l:l IV.Branch/control instructions l V. Barrel shifter instructions . VI. VFP instructions (y
0

. VII. Other instructions

I i i Y i T * The increases are mainly in data processing

I: 4,988,969, II: 2,747,897, III: 2379, IV: 1,909,696 InStrUCtlonS (Type II) InCIUdlng arlthmehc
e instructions (ADD, SUB), logical instructions (ORR,
Original Compiler | I 10.745.136 AND), movement instructions (MOV, MVN).
TaintART Compiler | | Y 13.038.994 TaintART compiler only introduces about 0.8 %
I: 5,028,730, II: 5,159,454, III: 2379, IV: 1,906,759, more instructions.

V: 747,014, VI: 61,898, VII: 132,760

* This means that TaintART can achieve better
T R R Y S T a— VRV runtime performance than the VM-based

Number of Instructions (ARM) 107 TaintDroid with the gains of AOT compilation
strategy in the new ART environment.

Kz
RS

Limitations

* TaintART cannot track specific data flows.
e Allimplicit leakage cannot be tracked.

 Complex malwares can detect the presence of TaintART and can hide their activities
with few some anti analysis techniques to detect host devices.

 Malware analysis, analysts need to manually trigger the behaviors

Kz
RS

Related Work

e There are many systems which dynamically monitor the runtime information in different layers of
the system and few of them are DroidScope, BareCloud and CopperDroid introspect Dalvik VM to
capture dynamic information for reconstructing malware behaviors.

* There are many systems which still use the static analysis system for disassembled code and try to
precisely model runtime behavior and use program analysis technique to resolve information flows
and few of them are Android Leaks and Flowdroid.

* Also there are many systems to detect suspicious behaviors and prevent potential privacy leakage
and few of them are Aurasium and RetroSkeleton which can add enforcement policies and fine-
grained mandatory access control on sensitive APl invocations by rewriting and repackaging apps.

Kz
RS

Thank you

