
TaintART:	A	Prac-cal	Mul--level	Informa-on-Flow	
Tracking	System	for	Android	RunTime	

Mingshen	Sun,	Tao	Wei,	John	C.S.	Lui	
	
	

	
	

Sudeep	Nanjappa	Jayakumar	



Agenda	
•  Android	Basics	
•  Introduc-on	
•  Contribu-ons	
•  SDK	Downloads	–	Google	
•  Background	
•  Environments	
•  Comparison	–	Android	Dalvik	&	ART	Environment	
•  System	Design	-	TaintART	
•  Taint	tag	Storage	
•  Taint	Propaga-on	Logic		
•  Implementa-on	
•  Case	Study	
•  Macrobenchmarks	and	Microbenchmarks	
•  Comparison	of	instruc-on	numbers	for	different	types	
•  Limita-ons	&	related	work	



Android	Basics	

What	is	Android?	
	
•  Free,	open	source	mobile	plaUorm	

o  Source	code	at	hVp://source.android.com	

•  Any	handset	manufacturer	or	hobbyist	can	customize		

•  Any	developer	can	use	
o  SDK	at	hVp://developer.android.com	

	



Background	

Android	Overview:	
•  Android	OS	is	based	on	the	Linux	Kernel.	
•  Android	has	middleware	called	applica-on	framework	which	is	based	on	database	and	App	run-me	

libraries.		
•  The	applica-on	framework	provides	various	APIs	for	apps	developers	-	ac-vity	management,	content	

management,	and	view	system.	
•  Android	apps	are	mainly	wriVen	in	java,	but	to	enhance	the	performance,	developers	can	embed	C/

C++	and	use	Java	Na-ve	Interface	(JNI)	to	interact	with	apps	and	framework	APIs.	
•  Each	app	runs	in	an	isolated	environment.	Apps	can	also	communicate	with	other	apps	and	services	

through	a	specific	inter-process	communica-on	mechanism	called	the	binder.	



Introduc-on	
•  TaintDroid	were	designed	for	the	legacy	Dalvik	environment	used	for	Dynamic	taint	analysis	for	

Android	apps.	
•  It	customizes	Android	run-me	(Dalvik	Virtual	Machine)	to	achieve	taint	storage	and	taint	

propaga-on.	
•  Latest	Android	version	no	longer	support	TaintDroid	because	of	the	compa-bility	and	performance	

issues.	
•  TaintART	–	Dynamic	mul-	level	informa-on	flow	tracking	system.	
•  Supports	the	latest	Android	run-me	environments.	
•  TaintART	u-lizes	processor	registers	for	taint	storage.	Compared	to	TaintDroid	which	needs	at	least	

two	memory	accesses	
•  Mul--level	taint	analysis	technique	to	minimize	the	taint	tag	storage.	
•  Mul-	level	privacy	enforcement	is	done	to	protect	sensi-ve	data	from	leakage.	
		



Contribu-ons	
•  Methodology:	

	Efficiently	track	dynamic	informa-on	flows	on	the	Android	mobile	opera-ng	system	with	ahead-of-
-me	compila-on	strategy.	Here	the	mul-	level	analysis	is	done	on	the	op-mized	code	than	doing	on	the	
original	bytecode	of	the	applica-on.	
	

•  Implementa7on:	
	 TaintART	 is	 implemented	 on	 Android	 Marshmallow.	 TaintART	 can	 track	 mul-level	 informa-on	

flows	within	the	method,	across	the	method	and	also	data	transmiVed		between	the	different	apps.		



Contribu-ons	Contd…	
•  Performance:	

	Macrobenchmarks,	microbenchmarks	and	compa-bility	test	are	performed	on	the	TaintART.	It	also	
achieves	 2.5	%	 and	 99.7	%	 faster	 for	 overall	 performance	 compared	 to	 quick	 compiler	 backend	 ART	
run-me	and	Dalvik	VM	in	Android	4.4.	

	TaintART	can	analyze	apps	without	compa-bility	issues.	

	

•  Applica7on	to	privacy	leakage	analysis:	
	Privacy	leakage	issues	have	been	addressed	on	the	popular	apps	in	Android	6.0.	

	



SDK	Downloads	-	Google	



Environments	
1.   Dalvik	Environment:	

–  Dalvik	adopts	virtual	machine	interpreta-on	strategy	at	run-me.	
–  Dexopt	 tool	 will	 op-mize	 original	 dex	 bytecode	 and	 at	 run-me,	 Dalvik	 virtual	 machine	 will	

interpret	bytecode	and	execute	architecture	specific	na-ve	code.	
–  Dalvik	VM	maintains	an	internal	stack	for	local	variables	and	arguments.	

2.	ART	Enviroment:	
–  First	introduced	as	experimental	environment	with	Android	4.4	
–  Replaced	Dalvik	and	was	made	as	default	environment	
–  ART	adopts	ahead-of--me	(AOT)	compila-on	strategy	instead	of	virtual	machine	interpreta-on.	
–  dex2oat	 tool	will	 directly	 compile	 dex	 bytecode	 into	 na-ve	 code	 during	 app’s	 installa-on	 and	

then	store	as	an	oat	file.	
–  Dex2oat	compiler	performs	mul-ple	-mes	to	achieve	beVer	performance.		

	
	



Comparison	–	Android	Dalvik	&	ART	Environment	



System	Design	-	TaintART	

•  TaintART	u-lizes	dynamic	taint	analysis	technique	and	can	track	data	by	inser-ng	tracking	logic.	
•  TaintART	employs	a	mul--level	taint	tag	methodology	to	minimize	taint	storage	so	that	tags	can	be	

stored	in	processor	registers	for	fast	access.	
•  ART	compiler	is	customized	to	retain	the	original	ahead	of	-me	organiza-ons.	
•  TaintART’s	mul-level	data	tracking	strategy	is	used	for	policy	enforcement	on	data	leakage.	
•  In	dynamic	taint	analysis,	sensi-ve	data	is	targeted	at	any	sensi-ve	func-on	called	taint	source	and	

taint	tag	will	be	labeled	on	the	sensi-ve	data	for	tracking.	
•  When	the	data	is	copied	or	transformed	to	another	place,	its	taint	tag	will	propagate	to	the	new	

place.	



System	Design	-	TaintART	
•  The	taint	tag	status	for	tracking	data	will	be	stored	in	taint	tag	storage.	
•  If	any	tainted	data	leaves	the	system	at	some	specified	func-ons	called	taint	sinks.	



Taint	tag	Storage	

•  Built	on	Google	Nexus	5	–	32	bit		ARM	plaUorm.	
•  16	CPU	registers,	each	with	32	bits.	
•  Register	R5	is	reserved	for	taint	storage	.	
•  Register	 allocator	 of	 TaintART	will	 ensure	 R5	 is	 not		

assigned	for	other	purposes	such	as	variable	storage.		
•  First	sixteen	bits	(from	bit	0	to	bit	15)	will	be	used	for	

storing	 taint	 tags	 of	 sixteen	 registers	 (from	 R0	 to	
R15).	

•  The	remaining	sixteen	bits	are	used	for	storing	taint	
tag	of	floa-ng	point	registers	(from	S0	to	S15).	



Taint	Propaga-on	Logic		

•  TaintART	 introduces	 much	 less	 instruc-ons	 on	
handling	the	taint	status	changes.	

•  There	 are	 two	 registers	 involved	 R5	 as	 the	 taint	
storage	register	&	R12	register	for	the	temporary	
usage.	

•  Involves	 4	 steps:	 clear	 des-na-on	 bit,	 masking	
tainted	bit,	shiqing	bits,	and		merging	tainted	bits.	

•  TaintART	 needs	 only	 three	 data	 processing	
instruc-ons	without	memory	access	 to	efficiently	
propagate	a	taint	label.	

•  This	 will	 be	 good	 to	 track	 the	 run-me	 and	 the	
performance	impacts.	



Implementa-on	

Taint	sources	and	sinks:	
•  TaintART	can	also	be	used	to	enforce	policy	on	sensi-ve	data	leakage. 		
•  Four	types	of	data	from	fiqeen	sources	are	tracked	and	it	is	categorized	in	to	device	iden-ty,	sensor	

data,	sensi-ve	content	and	loca-on	data.	
•  Taint	source	logic	is	placed	in	corresponding	classes	to	track	these	data.		
•  When	 it	 comes	 to	 device	 iden-ty	 apps	 can	 acquire	 telephony	 data	 by	 sending	 the	 request	 to	

telephony	manager	and	in	return	the		taint	source	logic	will	aVach	a	tag	in	the	binder	parcel.	
•  loca-on	data	and	sensi-ve	content	such	as	messages,	contact	lists	and	call	logs	are	categorized	in	the	

third	level.	These	data	are	considered	as	level	three	data	and	as	most	sensi-ve	data.	



Taint	sources	and	privacy	leakage	levels	



Implementa-on	

Taint	Analysis	Interface:	
•  Two	basic	interfaces	can	be	developed	for	taint	analysis.	
•  addTaint()	&	getTaint()	–	These	can	be	used	to	update	taint	tag	of	a	specific	local	variables	or	objects	

and	inspect	taint	tag	later.	
•  These	two	inter	
•  faces	are	implemented	in	order	to	achieve	beVer	performance.	



Implementa-on	&	Deployment	

•  The	prototype	of	TaintART	is	implemented	on	Android	6.0.1	Marshmallow	for	Nexus	5.	
•  ART	compiler	and	ART	run-me	sources	are	customized	to	implement	taint	tag	propaga-on.	
•  Binder	related	sources	are	also	customized	in	Android	framework.	
•  They	provide		customized	binary	and	libraries	such	as	dex2oat,	libart.so	and	libart-compiler.so	
•  Since	the	code	base	of	ART	environment	is	stable	aqer	Android	5.0,	the	implementa-on	is	generic	

for	Android	5.0	and	6.0	versions.	
•  Analysts	can	overwrite	our	customized	binary	and	libraries	to	a	target	device	with	root	privilege.	

There	is	no	need	of	reinstalling	the	customized	systems	from	scratch.	



Case	Study	

	Experimental	Setup	–	TaintDroid	is	downloaded	and	compiled	which	is	based	on	Android	
4.3.	

–  TaintART	is	run	on	Android	6.0.1	&	apps	used	in	the	case	study	were	downloaded	from	the	
Google	play	in	May	2016.	

Privacy	Tracking	–	Popular	apps	were	tested	and	poten-al	privacy	leakage	was	checked.	
–  They	manually	interacted	with	each	app	in	TaintDroid	and	TaintART	and	recorded	the	reports	of	

privacy	leakage.		

	



Privacy	Leakage	Analysis	



Case	Study	
Policy	Enforcement	–	Since	TaintARt	supports	latest	Android	run-me	it	is	easy	to	deploy	the	
policy	enforcement.	
-  Here	users	can	pre-define	mul--level	policy	rules.	

-  For	each	level	users	can	define	different	policies.			



Macrobencmarks	
•  TaintART	is	a	general	framework	that	can	be	used	by	end-users	to	protect	their	

privacy.	
•  Several	macrobenchmarks	were	performed	to	measure	the	overhead	for	normal	

usage	of	the	applica-ons.	



Microbenchmarks	
Compiler	Benchmarks	–	By	adop-ng	the	TaintART	the	compila-on	-me	is	
increased	by	336.076	milliseconds	to	403.064	milliseconds	and	introduces	about	19.9	
%	overhead.	
-	The	below	figure	illustrates	the	compila-on	-me	for	80	built-in	apps.	



Comparison	of	instruc-on	numbers	for	different	types	

•  The	total	number	of	instruc-ons	increases	about	21	
%.	

•  The	 increases	 are	 mainly	 in	 data	 processing	
instruc-ons	 (Type	 II)	 including	 arithme-c	
instruc-ons	 (ADD,	 SUB),	 logical	 instruc-ons	 (ORR,	
AND),	movement	instruc-ons	(MOV,	MVN).	

•  TaintART	 compiler	 only	 introduces	 about	 0.8	 %	
more	instruc-ons.		

•  This	 means	 that	 TaintART	 can	 achieve	 beVer	
run-me	 performance	 than	 the	 VM-based	
TaintDroid	 with	 the	 gains	 of	 AOT	 compila-on	
strategy	in	the	new	ART	environment.	



Limita-ons	

•  TaintART	cannot	track	specific	data	flows.	
•  All	implicit	leakage	cannot	be	tracked.	
•  Complex	malwares	can	detect	the	presence	of	TaintART	and	can	hide	their	ac-vi-es	

with	few	some	an-	analysis	techniques	to	detect	host	devices.	
•  Malware	analysis,	analysts	need	to	manually	trigger	the	behaviors	



Related	Work	

•  There	are	many	 systems	which	dynamically	monitor	 the	 run-me	 informa-on	 in	different	 layers	of	
the	 system	and	 few	of	 them	are	DroidScope,	BareCloud	and	CopperDroid	 introspect	Dalvik	VM	 to	
capture	dynamic	informa-on	for	reconstruc-ng	malware	behaviors.	

•  There	are	many	systems	which	s-ll	use	the	sta-c	analysis	system	for	disassembled	code	and	try	to	
precisely	model	run-me	behavior	and	use	program	analysis	technique	to	resolve	informa-on	flows	
and	few	of	them	are	Android	Leaks	and	Flowdroid.		

•  Also	 there	are	many	systems	 to	detect	 suspicious	behaviors	and	prevent	poten-al	privacy	 leakage	
and	 few	 of	 them	 are	 Aurasium	 and	 RetroSkeleton	 which	 can	 add	 enforcement	 policies	 and	 fine-
grained	mandatory	access	control	on	sensi-ve	API	invoca-ons	by	rewri-ng	and	repackaging	apps.		



Thank you 


