K\T\(lﬁ

Spectre: A Dependable
Introspection Framework via System
Management Mode

Fengwei Zhang, Kevin Leach, Kun Sun, and Angelos Stavrou.
In DSN'13.

Presented by Fengwei Zhang

Wayne State University CSC 6991 Topics in Computer Security 1

K\sr\(/ﬁ

Agenda

* |Introduction

e Background

e System Framework
* Experimental Results
* Conclusion

Wayne State University CSC 6991 Topics in Computer Security 2

K\T\(lﬁ

Agenda

* Introduction

e Background

e System Framework
* Experimental Results
* Conclusion

Wayne State University CSC 6991 Topics in Computer Security 3

K\sr\(/ﬁ
Introduction

Malware detection and analysis remain an open
research problem

Traditionally, malware detection is provided by

installing anti-malware tools (e.g., anti-virus)
within the OS

However, these detection tools are vulnerable to
malware running at the same level (e.g., rootkits)

’Out-of-box’ introspection mechanism proposed
for malware detection and analysis (e.g., Virtual

machine introspection)

K\sr\(/ﬁ
Introduction

Virtual Machine Intropsection (VMI) systems run malware within a
VM and use analysis tool to introspect the malware from outside

VMI systems have been widely adopted for malware detection and
analysis. They isolate the malware detection software from a
vulnerable guest [4, 5, 6]

Limitations of VMI systems:

— Large Trusted Computing Base (TCB) (e.g., Xen 4.2 has 208K lines of
code)

— Armored malware can detect the presence of a VM and alter its own
execution (e.g., anti-VM techniques)

— High performance overhead

We present Spectre, a dependable introspection framework via
system management mode

K\T\(lﬁ

Agenda

* |Introduction

e Background

e System Framework
* Experimental Results
* Conclusion

Wayne State University CSC 6991 Topics in Computer Security 6

K\sr\(/ﬁ
Background

System Management Mode (SMM)
* A CPU mode on the x86 Architecture.

e After entering into SMM, it executes the System Management
Interrupt (SMI) handler

 SMI handler stores at a sealed storage called System Management
RAM (SMRAM)

e BIOS locks the SMRAM, and the SMRAM is inaccessible from any
other CPU modes

* SMM-based systems
— Integrity checking: HyperGuard [7], HyperCheck [8],
— HyperSentry [1]
— SMM rootkits [3, 2]
— Attacks against SMM [9]

K\sr\(/ﬁ
Background

Basic Input and Output System (BIOS) and
Coreboot

* BIOS code is stored on-volatile ROM, and it is
responsible for hardware initialization before
OS starts.

* Coreboot is an open source project aimed to
replace the BIOS in current computer

e Spectre uses a custom SMI handler in
Coreboot

K\T\(lﬁ

Agenda

* |Introduction

e Background

e System Framework
* Experimental Results
* Conclusion

Wayne State University CSC 6991 Topics in Computer Security 9

System Framework

Target Machine

W W W

SPECTRE system regularly introspects native memory on target machine

Enter
SMM

— >isemantic

Check kernel data
Rebuild Check kernel code

data Check program data

1L

optional custom module ...

select module

Report alerts

Wayne State University

CSC 6991 Topics in Computer Security

K\sr\(/ﬁ

Monitor
Machine

:4

" “heartbeat’

attack occured?

10

K\sr\(/ﬁ

System Framework

e Step 1: Periodic triggering of SMM

Target Machine

W W W W W

SPECTRE system regularly introspects native memory on target machine i.or
y & y p y £ . Machine
Enter

SMM

K\sr\(/ﬁ

System Framework

e Step 1: Periodic triggering of SMM
e Step 2: Rebuilding semantic information

Target Machine

%@ .

SPECTRE system regularly introspects native memory on target machine .
y & y p y £ . Machine
Enter Rebuild

— >isemantic
SMM data

K\sr\(/ﬁ
System Framework

e Step 1: Periodic triggering of SMM
e Step 2: Rebuilding semantic information

e Step 3: Running a detection module

Target Machine

: : : . Monitor
SPECTRE system regularly introspects native memory on target machine Machine
Check kernel data
Enter

Rebmlfi Check kernel code |

— >isemantic

SMM . Check program data |
optional custom module ... |

select module

K\sr\(/ﬁ

System Framework

Step 1: Periodic triggering of SMM
Step 2: Rebuilding semantic information

Step 3: Running a detection module
Step 4: Communication with monitor server

Target Machine

%@ .

SPECTRE system regularly introspects native memory on target machine Machine
Check kernel data |
Rebuild .
Enter | Check kernel code Fpar alle : .

semantic i
SMM data Check program data t ..o Cheartbeat’
o attack occured?

1L

optional custom module ...

select module

\$sz//
Step 1: Periodic Triggering of SMM~

* Two ways to trigger an SMI

— Software-based: write to an ACPI port specified by
chipsets

— Hardware-based: NIC card, keyboard, mouse, and
hardware timer

e Hardware-based method is more reliable than
software-based method, so we use a
hardware timer at southbridge to periodically

assert an SMI

\sz//
- .] AGVa
Step 2: Rebuilding Semantic Information

* SMM only sees the raw memory, and does not know the semantics of the
memory (e.g. OS data structures)

e Similar to the semantic gap problem in VMI systems

* We manually bridge the semantic gap in our prototype, automatically
bridging (e.g., Virtuoso [6], VMST [4])

PsActiveProcessHead Executive Process Heap List Segment
Static VA of KPCR Segment S
Brev N Heap H, 0
| [| [" +78h H " Metadata...
0xf£df£000 I 1 KPCR I i KdVersionBlock \ eap 11 FirstEnt
+34h next \ Heap H» v
\ LastEntry
L PEB Heap Entry E
Executive Process Executive Process Executive Process I Heap Hy Ll
e.g., “Isass.exe” e.g., “explorer.exe” e.g., “System” / Data...
!
Other Heap Hy, Entry E»
prev _‘\\ prev _‘\\ prev
Executive
next next next Data...
Processes
Heap Ho Metadata Entry E3
Segment Sy Entry ...
Heap List Segment Sy
Seoment S Data...
Other heap ¢ ’
Handle Table 3 [«—>| Handle Table 2 [«—>{ Handle Table 1 Entry E,,
tables Segment .S,
Process Environment Block Heap

Wayne State University CSC 6991 Topics in Computer Security 16

Ksz//

Semantic Gap Problem in VMI e

* SoK: Introspections on Trust and the Semantic
Gap. Bhushan Jain, Mirza Basim Baig, Dongli
Zhang, Donald E. Porter, and Radu Sion. In
S&P'14.

e SMM-based Systems, TrustZone-based
Systems, SGX, other hardware isolated
execution environments (HIEEs)

Ksz//

Step 3: Running a Detection Module

* We demonstrate the capability of our
framework with three memory-based attacks:

— Detecting heap spray attacks
— Detecting heap overflow attacks
— Detecting rootkits
* Other checking modules can be extended into

Spectre with corresponding detection
algorithm

\sz//
. VV
Step 4: Communication with Monitor Machine

The SMI handler alerts the monitor machine
over a serial or Ethernet cable

We port the NIC driver into SMI handler

because we do want to trust any code in the
OS

‘Heartbeat’ message can be used to detect
denial of service attack

Exit from SMM and resume OS states

K\T\(lﬁ

Agenda

* |Introduction

e Background

e System Framework
* Experimental Results
* Conclusion

Wayne State University CSC 6991 Topics in Computer Security 20

K\sr\(/ﬁ
Prototype Specification

Hardware

— Motherboard: ASUS-M2V MX SE

— CPU: 2.2GHz AMD Sempron LE-1250

— RAM: 2GB Kingston DDR2

— NICs: Integrated NIC and Intel e1000 Gigabit with
PCI

Software

— BIOS: Coreboot+SeaBIOS

— OSes: Linux (Cent OS 5.5) and Windows XP SP3

K\T\(lﬁ

Memory Attacks Detection

* Run various memory attacks, and measure the detection time
in the SMM

* Detection time = Time at SMM exit - Time at SMM enter

Modules Attacks Time (ms)
Firefox CVE-2009-2478 31

Heap Spary Internet Explorer CVE-2010-3971 28
Adobe Acrobat CVE-2011-2462 26
Adobe Flash Player CVE-2011-6069 29

Heap Overflow XnView CVE-2012-0276 32

Rootkit Fu rootkit 8

Wayne State University CSC 6991 Topics in Computer Security 22

K\sr\(/ﬁ
System Overhead

Spectre is OS-agnostic, and can detect memory attacks
on both Windows and Linux platforms.

Benchmark: PassMark on Windows and UnixBench on
Linux

First, we run different detection modules, and record
their benchmark scores

— Without detection module

— Heap spray detection module

— Heap Overflow detection module

— Rootkits detection module

Second, we change the SMI triggering rate, and it
ranges from 1/16 s to 5s

Percent overhead

K\T\(lﬁ

System Overhead

e X-coordinate: Sampling interval
 Y-coordinate: Percent overhead

Windows Linux
| | \ \ | \
[l 0 Without detection module - 20% | [1 @ Without detection module —
Oo Heap spray module 4 0o Heap spray detection module
20% |[In Heap overflow module | § 15% |[] 0 Rootkit detection module N
=
[l B Rootkit module o
S 10% | :
=
10% |- 5
o
Jin ﬂ] L) L bl
O% J:l:- J_l_. ! 1 |_ O% |—|T|_ I_m_l i 7 |_ 7 _‘
1 1
5s 2s ' 1.8 s TS 5s 2s ls %s %s
Sampling interval / s Sampling interval / s

Wayne State University CSC 6991 Topics in Computer Security 24

\$sz//
Comparison with VM| Systems e

* Smaller code base—-Spectre only trust the BIOS, but VMI
systems need to trust hypervisor

 More transparent—armored malware with anti-VM techniques
cannot detect it

e Better Performance

Table: Runtime comparison of introspection programs between
SPECTRE and Virtuoso

Spectre (ms) Virtuoso (ms)

. pslist 6.6 450.2

Windows 1smod 7.6 698.1

. pslist 4.3 6494.1
Linux

1smod 4.4 2437.0

Wayne State University CSC 6991 Topics in Computer Security 25

K\T\(lﬁ

Agenda

* |Introduction

e Background

e System Framework
* Experimental Results

e Conclusion

Wayne State University CSC 6991 Topics in Computer Security 26

\Sx?Z
. NV
Conclusion

* We introduce a hardware-assisted framework
that can examine code across all layers of a
running system

e Spectre is OS-agnostic and fully transparent to
higher level software

* We have implemented a prototype of our
framework in both Linux and Windows, and
demonstrates that our system can detect various
memory attacks including heap spray, heap
overflow and rootkits.

I NV -
References

[1] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky.
HyperSentry: enabling stealthy in-context measurement of hypervisor integrity.
In Proceedings of the 17th ACM Conference on Computer and Communications Security, 2010.

[2] BSDaemon, coideloko, and DOnAndOn.
System Management Mode Hack: Using SMM for ‘Other Purposes’.
Phrack Magazine, 2008.

[3] S. Embleton, S. Sparks, and C. Zou.
SMM rootkits: a new breed of OS independent malware.
In Proceedings of the 4th International Conference on Security and Privacy in Communication Netowrks, 2008.

[4] Y. Fuand Z. Lin.
Space Traveling across VM: Automatically bridging the semantic gap in virtual machine introspection via
online kernel data redirection.
In Proceedings of the 33rd IEEE Symposium on Security and Privacy, 2012.

[6] X. Jiang, X. Wang, and D. Xu.
Stealthy malware detection through vmm-based out-of-the-box semantic view reconstruction.
In Proceedings of the 14th ACM conference on Computer and communications security, 2007.

[6] T. Leek, M. Zhivich, J. Giffin, and W. Lee.
Virtuoso: Narrowing the semantic gap in virtual machine introspection.
In Proceedings of the 32nd IEEE Symposium on Security and Privacy, 2011.

[7] J. Rutkowska and R. Wojtczuk.
Preventing and detecting Xen hypervisor subversions.
Blackhat Briefings USA, 2008.

[8] J. Wang, A. Stavrou, and A. Ghosh.
HyperCheck: A hardware-assisted integrity monitor.
In Proceedings of 13th International Symposium On Recent Advances In Intrusion Detection, 2010.

[9] R. Wojtczuk and J. Rutkowska.
Attacking SMM Memory via Intel CPU Cache Poisoning, 2009.

Wayne State University CSC 6991 Topics in Computer Security 28

