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Introduction

Malware detection and analysis remain an open
research problem

Traditionally, malware detection is provided by

installing anti-malware tools (e.g., anti-virus)
within the OS

However, these detection tools are vulnerable to
malware running at the same level (e.g., rootkits)

’Out-of-box’ introspection mechanism proposed
for malware detection and analysis (e.g., Virtual

machine introspection)
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Introduction

Virtual Machine Intropsection (VMI) systems run malware within a
VM and use analysis tool to introspect the malware from outside

VMI systems have been widely adopted for malware detection and
analysis. They isolate the malware detection software from a
vulnerable guest [4, 5, 6]

Limitations of VMI systems:

— Large Trusted Computing Base (TCB) (e.g., Xen 4.2 has 208K lines of
code)

— Armored malware can detect the presence of a VM and alter its own
execution (e.g., anti-VM techniques)

— High performance overhead

We present Spectre, a dependable introspection framework via
system management mode
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Background

System Management Mode (SMM)
* A CPU mode on the x86 Architecture.

e After entering into SMM, it executes the System Management
Interrupt (SMI) handler

 SMI handler stores at a sealed storage called System Management
RAM (SMRAM)

e BIOS locks the SMRAM, and the SMRAM is inaccessible from any
other CPU modes

* SMM-based systems
— Integrity checking: HyperGuard [7], HyperCheck [8],
— HyperSentry [1]
— SMM rootkits [3, 2]
— Attacks against SMM [9]
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Background

Basic Input and Output System (BIOS) and
Coreboot

* BIOS code is stored on-volatile ROM, and it is
responsible for hardware initialization before
OS starts.

* Coreboot is an open source project aimed to
replace the BIOS in current computer

e Spectre uses a custom SMI handler in
Coreboot
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System Framework
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System Framework

e Step 1: Periodic triggering of SMM
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System Framework

e Step 1: Periodic triggering of SMM
e Step 2: Rebuilding semantic information
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System Framework

e Step 1: Periodic triggering of SMM
e Step 2: Rebuilding semantic information

e Step 3: Running a detection module
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System Framework

Step 1: Periodic triggering of SMM
Step 2: Rebuilding semantic information

Step 3: Running a detection module
Step 4: Communication with monitor server
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Step 1: Periodic Triggering of SMM~

* Two ways to trigger an SMI

— Software-based: write to an ACPI port specified by
chipsets

— Hardware-based: NIC card, keyboard, mouse, and
hardware timer

e Hardware-based method is more reliable than
software-based method, so we use a
hardware timer at southbridge to periodically

assert an SMI
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Step 2: Rebuilding Semantic Information

* SMM only sees the raw memory, and does not know the semantics of the
memory (e.g. OS data structures)

e Similar to the semantic gap problem in VMI systems

* We manually bridge the semantic gap in our prototype, automatically
bridging (e.g., Virtuoso [6], VMST [4])
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Semantic Gap Problem in VMI e

* SoK: Introspections on Trust and the Semantic
Gap. Bhushan Jain, Mirza Basim Baig, Dongli
Zhang, Donald E. Porter, and Radu Sion. In
S&P'14.

e SMM-based Systems, TrustZone-based
Systems, SGX, other hardware isolated
execution environments (HIEEs)
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Step 3: Running a Detection Module

* We demonstrate the capability of our
framework with three memory-based attacks:

— Detecting heap spray attacks
— Detecting heap overflow attacks
— Detecting rootkits
* Other checking modules can be extended into

Spectre with corresponding detection
algorithm
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Step 4: Communication with Monitor Machine

The SMI handler alerts the monitor machine
over a serial or Ethernet cable

We port the NIC driver into SMI handler

because we do want to trust any code in the
OS

‘Heartbeat’ message can be used to detect
denial of service attack

Exit from SMM and resume OS states
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Prototype Specification

Hardware

— Motherboard: ASUS-M2V MX SE

— CPU: 2.2GHz AMD Sempron LE-1250

— RAM: 2GB Kingston DDR2

— NICs: Integrated NIC and Intel e1000 Gigabit with
PCI

Software

— BIOS: Coreboot+SeaBIOS

— OSes: Linux (Cent OS 5.5) and Windows XP SP3
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Memory Attacks Detection

* Run various memory attacks, and measure the detection time
in the SMM

* Detection time = Time at SMM exit - Time at SMM enter

Modules Attacks Time (ms)
Firefox CVE-2009-2478 31

Heap Spary Internet Explorer CVE-2010-3971 28
Adobe Acrobat CVE-2011-2462 26
Adobe Flash Player CVE-2011-6069 29

Heap Overflow XnView CVE-2012-0276 32

Rootkit Fu rootkit 8
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System Overhead

Spectre is OS-agnostic, and can detect memory attacks
on both Windows and Linux platforms.

Benchmark: PassMark on Windows and UnixBench on
Linux

First, we run different detection modules, and record
their benchmark scores

— Without detection module

— Heap spray detection module

— Heap Overflow detection module

— Rootkits detection module

Second, we change the SMI triggering rate, and it
ranges from 1/16 s to 5s
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System Overhead

e X-coordinate: Sampling interval
 Y-coordinate: Percent overhead
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Comparison with VM| Systems e

* Smaller code base—-Spectre only trust the BIOS, but VMI
systems need to trust hypervisor

 More transparent—armored malware with anti-VM techniques
cannot detect it

e Better Performance

Table: Runtime comparison of introspection programs between
SPECTRE and Virtuoso

Spectre (ms) Virtuoso (ms)

. pslist 6.6 450.2

Windows 1smod 7.6 698.1

. pslist 4.3 6494.1
Linux

1smod 4.4 2437.0
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Conclusion

* We introduce a hardware-assisted framework
that can examine code across all layers of a
running system

e Spectre is OS-agnostic and fully transparent to
higher level software

* We have implemented a prototype of our
framework in both Linux and Windows, and
demonstrates that our system can detect various
memory attacks including heap spray, heap
overflow and rootkits.
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