CaSE: Cache-Assisted Secure
Execution on ARM Processors

NING ZHANG, KUN SUN, WENJING LOU, TOM HOU

Y7 WM
DT

Whoam | ?

- 10 years, working on different security products — data forensic, multi-level security systems

- did my undergrad @ Umass — middle of no where
- did my Ph.D @ VT in DC. — nice area, but | never got to go out !
- back to industry doing interesting things — or not

- lastly, I am also an adjunct assistant professor at the complex network and security research
laboratory (CNSR) at Virginia Tech

Talk Outline

v"Motivation and Background — Why this work ?

v'Threat Model — What are we defending against ?

v'CaSE: Cache-Assisted Secure Execution — How does it work?
v'CaSE highlight — Challenges ?

v'Evaluation — How did we do ?

v"Conclusion and future Work

Cyber Attacks

THEDAIY BREACH

\l R///

I\“AGKS\.\. Vs
~3p BIOTECH

Y 3 10P Bl
GOMPM“ TRRGETED\.\.\.

m

BANKS O ~BURNED!
// =
— — T GIANTWALLSL

: FORTUNE : \:\RMBREM:“E“\“
e —

L
©

Threat to Mobile devices

Mobile Malware year in Review

But how does it really work ?

Preventing Across the Cyber Attack* Life Cycle

o Breach the Perimeter O Deliver the Malware ® e Lateral Movement ® o Exfiltrate Data

o % X0

Actions on
the

Gather Leverage Execute Command
Intelligence Exploit Malware & Control

objective

Reconnaissance Weaponization Exploitation Malware Data Theft,
& Delivery Communicates Sabotage,
with Attacker Destruction
Unauthorized Access Unauthorized Use
e e s e e ke *:OPNFV

Buffer overflow - What is a software stack

saved ESI
% saved EDI
(g]
o local variable 3 ESP
o
2 local variable 2
=

local variable 1 [ebp]-4

saved EBP
-
‘% return address EBP
% parameter 1 [ebp]+8
g parameter 2 [ebp]+12
n
] parameter 3 [ebp]+16

Software Exploits — Can you spot the bug ?

#include <iostream>
using namespace std;
int main(void)
{
int tests[10];
int test;
int num elems;

cout << "How many numbers? ";
cin >> num elems;
for (int i = 0; i < num elems; i++)
{
cout << "Please type a number: ";
cin >> test;
tests[i]= test;

}

return C;

What happened ?

saved ESI
% saved EDI
(g]
A local variable 3= ESP
] fany
Q] 19”4
2 local variable 2(N
= g

local variable 1L | [ebp]-4

saved EBP
T b
‘% return addressa EBp
% parameter 1< | [ebp]+8
g parameter 2 [ebp]+12
n
] parameter 3 [ebp]+16

Before and After

Running normal

PROGRAM
INSTRUCTIONS

After Attack

Data

PROGRAM
INSTRUCTIONS

HEAP
Dynamic Memory

Data

HEAP

Malicious Code!

PROCEDURE CALL
FRAME

Buffer

Return address

PROCEDURE CALL
FRAME

Buffer Overflow

Modified Return

Attacker plantscode tha overflows buffer and corruptsthereturn address Instead of
returning to the gppropr ate calling procedure, the modified return addressreturns
control to malics code, located eksewhere in process memory.

Address!

So are we doomed ? The best you can do ?

ALARM + BROWSER * CALCULATOR * CALENDAR * CAMERA
* CLOCK * CONTACTS * DIALER * EMAIL * HOME * IM *
MEDIA PLAYER * PHOTO ALBUM * SMS/MMS + VOICE DIAL

ACTIVITY MANAGER + CONTENT PROVIDERS + LOCATION
MANAGER * NOTIFICATION MANAGER + PACKAGE
MANAGER * RESOURCE MANAGER * TELEPHONY
MANAGER * VIEW SYSTEM » WINDOW MANAGER

AUDIO MANAGER * FREETYPE * LIBC * MEDIA
FRAMEWORK + OPENGL/ES * SQLITE « SSL +
SURFACE MANAGER + WEBKIT

AUDIO * BLUETOOTH * CAMERA * DRM *
EXTERNAL STORAGE * GRAPHICS * INPUT *
MEDIA + SENSORS * TV

CORE LIBRARIES *
ART * DALVIK VM

AUDIO DRIVERS * BINDER (IPC) DRIVERS * BLUETOOTH
DRIVER « CAMERA DRIVER * DISPLAY DRIVER * KEYPAD
DRIVER * POWER MANAGEMENT + SHARED MEMORY
DRIVER + USB DRIVER * WIFI DRIVER

ARM TrustZone — Trusted Execution
Environment (TEE)

System Wide Protection Normal World Secure World

Trusted

Non Trusted

v'Divides system resources into two worlds

v"Normal World runs the content rich OS

services
hardware hardware

v'The protection of resources includes
- processor, memory and |0 devices

v'Secure World runs security critical

Many Products use ARM TrustZone

Samsung Knax 0

TRUSTONIC

SIEffaWBfE

Physical Level Attack

Hardware Attacks - Cold Boot Attack

What can you recover ?

And whatever else that are in memory

.., - J(\ - (= |
) - Ly
Yt 1 M
—f—{ m
(&
S M - h
= = == (2 =
O — O
— OO -
SN e =t
~ SO oo - o
0 2
e~
OO
» O1MO1
o A - 1
e RO -
- L mgﬂi1xo4 i1
OO O — OO~
L} N]~ LIS > »

Previous Works on Coldboot Defense

TRESOR Sec 2011 — Register-based RAM-less AES encryption
Copker NDSS 2014 — Cache-based RAM-less RSA encryption
PixelVault CCS 2014 — GPU based RAM-less encryption

Sentry ASPLOS 2015 — Cache-based RAM-less encryption

Mimosa S&P 2015 — Transactional-based RAM-less encryption

Multi-vector Adversary

Introducing CaSE - Goals

v'Defense against Multi-Vector adversary
v'Physical memory disclosure attack — Cold boot
v"Compromised rich OS

v'Provide confidentiality and integrity to both the code and data of
the binaries in TEE

v'Confidentiality — Protects IP, secret code, sensitive data
v'Integrity — Program behavior

Threat Model

Q
(23 Processor Cache
o]
c] |
et]
S
- gl NonSecure
Q) —
= | Cache w
>
(V)]
Secure Memory NonSecure Normal World Memory - Cold Boot Attack
= .
é | Secure OS | ‘ NonSecure Rich OS ‘ g @ Software Attack
- [Taganang] [Taganang]

Case-Assisted Execution in Secure World

(@)
A3
2 Processor Cache £01010101201011015
= S 2
<
O Context
c Secure
@) storage Packer
£ 5 =
% O S0101010110101101R
>
Vg

NonSecure Normal World Memory Secure Memory
= .
< NonSecure Rich OS @ | Secure OS |
oc
e [aoya0n, L)

e © e

Case-Assisted Execution in Normal World

@)
A
by S00000001000010020110101001 Processor Cache
Q- O o o
2 S= 3
<
O Context CaSE
c Secure
@) storage Packer E| (Manager
: = —— O
= o
= O=r —6000000010000100R0110101001=
>
)
NonSecure Normal World Memory Secure Memory
= | NonS OS
< onSecure ‘ ,
oc - Secure Rich OS
o (aoyuanm]

I e

Cache Architecture Details

NonSecure Flag Cache way Cache set Cache line

‘ [l [
| |
| |
NS 0
NS 1
: 2 B
3 ;
Tag [/ 5F=<
_—6‘
7

<

A 4

Controlling the Cache

v'Cache Locking is available through L2 cache lockdown
CP15 coprocessor

v'The granularity of locking is per cache way

v'On Cortex-A8, which has 8 way total 256KB L2 unified
cache

SoC-Bound Execution — Cache Locking

disable_local_irq () ;

enableCaching (memArea) ;

disableCaching (loaderCode) ;

disableCaching (loaderStack) ;

invalidate_cache (virtual address of memArea) ;

unlockWay (wayToFill) ;

lockWay (allWay XOR wayToFill);

while (has more to load in memArea)
[LDR r0, [memArea + 1];

lockWay (wayToFill) ;

unlockWay (allWay XOR wayToFill) ;

rootBraspt : git clone --verbose git://github.con/Hexxeh/rpi
Cloning into rpi-firnuvare ...

remote: Counting objects: 1673, done.

remote: Compressing objects: 108X (1347/1347), done.

remote: Total 1673 (delta 286), reused 1291 (delta 2686)
Receiving objects: 188X (1673/1673), 27.88 MiB | 386 KiB/s. done.
Resolving deltas: 188X (286/286), done.
[1461.679215] [cut here 1]
[1461.692884] kernel BUG at drivers/tty/vt/vt.c:2838]

[1461.7864996]1 Internal error: Oops - BUG: @ [#1]1 PREEMPT ARM

Entering kdb (current=8Bxc5eB4368, pid 1326) Oops: (null)
due to oops @ BxcB227ccB

Pid: 1326, comnm: agetty E

CPU: 8 Tainted: G C (3.6.11 - #375)

PC is at con_shutdoun+8x368/8x34

LR is at queue_release_one_tty+8x28/0x54

pc : [<cB227ccB>] Ir : [<cB2125e8>1] psr: 68680813
sp : c/bedd28 ip : GBOBBAEA fp : GROOBRLR

ri@: GB0BGEEE r9 : POBBEEBA r8 : c7B8ad1d8

r7 : BBBBBBA2 r6 : c7becBBd rS : BOOBGEEE rd4 : c769a808
rd : cB227c98 r2 : GOOOBBBE r1 : PEGRGRRA : c769a800
Flags: nZCv IROs on FIOQs on Mode SVC_32

Control: 88c5387d Table: 83e50888 DAC:

(<cBB13a7c>] (unwind_backtrace+8x8/8xf8) from [(cBB?ZaBO)] (kdb_dumpregs +8x28/8x58)
(<cBB72aB88>]1 (kdb_dumpregs+8x28/8x58) from [<cB874e84)] (kdb_main_loop+8x3aB/8x6fc)
(<cB874e84>]1 (kdb_main_loop+Bx3a8/8x6fc) from [<cBA774e8>] (kdb_stub+8x154/8x368)

[(c8277498)] (kdb_stub+8x154/8x388) from [<cBB6e61c>] (kgdb_handle_except ion+8x1f8/0x668)
nore> _

Self Modifying Program

L1 Instruction Cache L1 Data Cache

L2 Unified Cache

(]

System On Chip (SoC)

-valuation
-easibility of using Cache as Memory

Application Code+Data (KB)
AES 2.4
RSA 10

SHAI1 5

CaSE Crypto Lib 17.4
Kernel Integrity Checker 6.6
CaSE Packer 2.8
Packed CaSE Crypto Lib 20.4
Packed Kernel Checker 9.5

Evaluation
Performance Impact to the Application

60 2.5

v
o
1

F =3
o
Il

20 A

Encryption Bandwidth (MB/S)

Decryption Bandwidth (Decryption / s)
iR w
o o

1 16 64 128 1024 4096 8192 1KB 4k8 16 KB 64 KB 512 KB 1MB 10MB 100MB
Number of Messages Per Request Plaintext Size To Encrypt Per Request

MRSAinRichOS WRSAin CaSE Seure Cache M RSAin CaSE Normal Cache ® AES in Rich OS = AES in CaSE Secure Cache ® AES in CaSE Normal Cache

Performance Impact to the System

1

0.975

E 0.95
[e]
Q
v
[}
£

S o9
£
o
k=

.§_’ 0.9
©
9
o]
Q
[}

0.875

0.85

0 1 2 3 4 5 6 7 8
Number of L2 Cache Way Lock
== LinPack =@-RandMem == Scale Overall AnTuTu Score

«#=AnTuTu CPU Integer (Single) =@=AnTuTu GPU 2D ~f%=AnTuTu CPU Integer (Multi)

Conclusion

v A secure cache-assisted SoC-bound execution framework

v'Provide confidentiality and integrity to sensitive code and data of
applications

v'Protect against both software attacks and cold boot attack.

v'In the future, we would like to further study efficient method to
provide OS support to the TEE.

What other things did | do ?

- Differential privacy in data mining - ICC 11

- Reverse engineer ASUS BIOS - Trusted Cloud Computing — CNS 14
- Anti-memory forensic framework — HIVES — ASIACCS 15

- Cache-based rootkits — EUROSP 16

- Case — Cached-assisted security execution — SP16

- Augmented reality authentication — TRUSTED — CCS16

Feel free to contact me at Ningzhang.info / ningzh@vt.edu

