
CaSE: Cache-Assisted Secure
Execu3on on ARM Processors
N1NG ZHANG , KUN SUN, WENJING LOU, TOM HOU

Who am I ?
	 -	10	years,	working	on	different	security	products	–	data	forensic,	mul;-level	security	systems	

	 -	did	my	undergrad	@	Umass	–	middle	of	no	where	

	 -	did	my	Ph.D	@	VT	in	DC.	–	nice	area,	but	I	never	got	to	go	out	!	

	 -	back	to	industry	doing	interes;ng	things	–	or	not	

	 -	lastly,	I	am	also	an	adjunct	assistant	professor	at	the	complex	network	and	security	research	
laboratory	(CNSR)	at	Virginia	Tech	

Talk Outline
ü Mo;va;on	and	Background	–	Why	this	work	?	
ü Threat	Model	–	What	are	we	defending	against	?		
ü CaSE:	Cache-Assisted	Secure	Execu;on	–	How	does	it	work?	
ü CaSE	highlight	–	Challenges	?	
ü Evalua;on	–	How	did	we	do	?	
ü Conclusion	and	future	Work	

Cyber ALacks

Threat to Mobile devices

But how does it really work ?

Buffer overflow - What is a soRware stack

SoRware Exploits – Can you spot the bug ?

What happened ?

Tests	array	

Before and ARer J

So are we doomed ? The best you can do ?

ARM TrustZone – Trusted Execu3on
Environment (TEE)
	 System	Wide	Protec;on		

ü Divides	system	resources	into	two	worlds	

ü Normal	World	runs	the	content	rich	OS	

ü Secure	World	runs	security	cri;cal	
services	

ü The	protec;on	of	resources	includes	
					-			processor,	memory	and	IO	devices	
	

Normal	World	 Secure	World	

Many Products use ARM TrustZone

Smart Devices Going Mobile

Physical Level ALack

Hardware ALacks - Cold Boot ALack

What can you recover ?

And whatever else that are in memory

Previous Works on Coldboot Defense
	 TRESOR	 	Sec 	2011	–	Register-based	RAM-less	AES	encryp;on	

	 Copker		 	NDSS	 	2014	–	Cache-based	RAM-less	RSA	encryp;on		

	 PixelVault	 	CCS	 	2014	–	GPU	based	RAM-less	encryp;on	

		Sentry			 	ASPLOS		2015	–	Cache-based	RAM-less	encryp;on	

	 Mimosa	 	S&P 	2015	–	Transac;onal-based	RAM-less	encryp;on		

Mul3-vector Adversary

Introducing CaSE - Goals
ü Defense	against	Mul;-Vector	adversary		
ü Physical	memory	disclosure	a_ack	–	Cold	boot	
ü Compromised	rich	OS	

ü Provide	confiden;ality	and	integrity	to	both	the	code	and	data	of	
the	binaries	in	TEE	
ü Confiden;ality	–	Protects	IP,	secret	code,	sensi;ve	data	
ü Integrity	–	Program	behavior	

Sy
st
em

	O
n	
Ch

ip
	(S
oC

)	
Threat Model
DR

AM
	

Secure	Cache	

NonSecure	Normal	World		Memory	Secure	Memory	

Secure	OS	 NonSecure	Rich	OS	

NonSecure	
Cache	

Processor	Cache	

Case-Assisted Execu3on in Secure World

		

Sy
st
em

	O
n	
Ch

ip
	(S
oC

)	
DR

AM
	 NonSecure	Normal	World		Memory	 Secure	Memory	

Secure	OS	NonSecure	Rich	OS	

Processor	Cache	

Secure	
storage	 Packer	

0101010110101101	1101	10
01
	

11
01
	 0101	0101010110101101	

Context	

Case-Assisted Execu3on in Normal World

		

Sy
st
em

	O
n	
Ch

ip
	(S
oC

)	
DR

AM
	 Secure	Memory	NonSecure	Normal	World	Memory	

NonSecure	OS	 Secure	Rich	OS	

Processor	Cache	

Secure	
storage	 Packer	

0101010110101101	1101	10
01
	

11
01
	 0101	

Context	

0101010110101101	

1101	

0101010110101101011010100	

01
01
	

1101	0101010110101101011010100	01
01
	

CaSE	
Manager	

Cache Architecture Details

Controlling the Cache
ü Cache	Locking	is	available	through	L2	cache	lockdown	
CP15	coprocessor	

ü The	granularity	of	locking	is	per	cache	way		

ü On	Cortex-A8,	which	has	8	way	total	256KB	L2	unified	
cache	

SoC-Bound Execu3on – Cache Locking

Self Modifying Program
Sy
st
em

	O
n	
Ch

ip
	(S
oC

)	

L1	Instruc;on	Cache	 L1	Data	Cache	

L2	Unified	Cache	

Self Modifying Program
Sy
st
em

	O
n	
Ch

ip
	(S
oC

)	

L1	Instruc;on	Cache	 L1	Data	Cache	

L2	Unified	Cache	

Evalua3on
Feasibility of using Cache as Memory

Evalua3on
Performance Impact to the Applica3on

Operation Time (µs)
Environment Preparation 613

Environment Integrity Check 1540
CaSE Unpacking 5973

Kernel Check 18676
Environment Cleanup 412

Total Time 27214

Table II: Kernel Integrity Checker in Normal Cache

From the time breakdown, we can see that though environ-
ment setup and cleanup consume some processor cycles, the
major computation overhead originates from the unpacking
process, which decrypts the encrypted CaSE application
payload. The entire kernel check takes 0.02 second to
complete, and the application context saving time is 94 µs.

2) CaSE Secure Application Performance: Using the
crypto library as a case study for the CaSE secure execution
mode, we measure the benchmarks for a secure cache execu-
tion similar to the normal cache execution. Table III shows
the time breakdown of a secure call to perform encryption
using AES CBC mode. In the secure mode, the cache is
protected against the compromised rich OS. Therefore, it is
not necessary to clean up the execution environment.

Operation Time (µs)
World Switching 2.6

AES CBC Encrypt (1KB) 443
Output Synchronization (1KB) 2

Total Time 447.6

Table III: AES Encryption in Secure Cache

3) Performance Trade-off between Execution Modes: To
find out the impact of SoC-bound execution environment on
application performance, we run AES, RSA, and SHA1 in
different environments and compare their performance. First,
we port the application into a kernel module and load the
module into the rich OS to measure the performance without
any security enhancement. Second, we run the application
in the two CaSE execution environments, one in the normal
world and the other in the secure world. We consider that
the first experiment should achieve similar performance as
other kernel encryption solutions, and should serve as a
good baseline for comparison. On the other hand, the CaSE
execution will suffer performance penalty for the enhanced
security.

The experimental results on AES algorithm are shown
in Figure. 5. The performance of secure executed AES is
almost identical to that of generic AES. The secure AES
has a small advantage over the generic kernel AES when
the memory buffer to be encrypted is small. This is due
to preloaded cache lines for the AES data section. For

Figure 5: AES Speed Comparison

smaller size encryption requests, the normal cache execution
is significantly slower than the other two methods. This
is because the environment is created and destroyed for
each request in order to protect the confidentiality and
integrity of the execution environment. However, as the size
of the plaintext increases, the difference in the encryption
bandwidth diminishes. This is because the overhead to create
and destroy the environment becomes insignificant.

We have also performed the same set of experiments on
RSA algorithm and SHA1 algorithm. The results for RSA
algorithm are shown in Figure. 6. In this experiment, we
measure the number of 1024-bit RSA decryptions that the
system can carry out in one second. Similar to AES, the
normal cache execution takes a penalty in the environment
initialization and clean up. However, as the number of
messages in the request becomes larger, this fixed cost can
be ignored. Lastly, we also benchmark the performance of
SHA1. We build up our test case by sending fixed size 512
byte packet to the SHA1 module to calculate the hash. Due
to simplicity of SHA1, the normal world execution overhead
is high when the number of messages per request is low.
Similar to RSA and AES, the environment penalty becomes
small as the number of messages increases.

Figure 6: Comparison of RSA Operation

Performance Impact to the System

Conclusion
ü A	secure	cache-assisted	SoC-bound	execu;on	framework		
ü Provide	confiden;ality	and	integrity	to	sensi;ve	code	and	data	of	
applica;ons	

ü Protect	against	both	sodware	a_acks	and	cold	boot	a_ack.	
ü In	the	future,	we	would	like	to	further	study	efficient	method	to	
provide	OS	support	to	the	TEE.			

What other things did I do ?
	 -	Differen;al	privacy	in	data	mining	-	ICC	11	

	 -	Reverse	engineer	ASUS	BIOS	-	Trusted	Cloud	Compu;ng	–	CNS	14	

	 -	An;-memory	forensic	framework	–	HIVES	–	ASIACCS	15	

	 -	Cache-based	rootkits	–	EUROSP	16	

	 -	Case	–	Cached-assisted	security	execu;on	–	SP16	

	 -	Augmented	reality	authen;ca;on	–	TRUSTED	–	CCS16		

	 Feel	free	to	contact	me	at	Ningzhang.info	/	ningzh@vt.edu	

