
Ret2dir: Rethinking Kernel
Isolation

Kermerlis et al. Columbia University
Presented by Lucas Copi

Introduction

!  In the past attackers have focused efforts on server and
client applications

! Due to lesser complexities and simpler vulnerabilities

!  Recently, attacks have become more focused on the
Kernel

! User-level software has become increasingly more
secure

!  In 2013 there were 355 reported kernel vulnerabilities-140
more than 2012

Introduction Continued

!  Why the kernel?

!  Gives greater amount of control over system

! The kernel is mapped into the address space of each process

! Allows attackers to execute code in privileged mode

!  Larger code base

! 16.9 MLOC in Linux Kernel v. 3.10

!  Increased vulnerabilities

! Stack, heap, buffer overflows

!  Integer overflows

! Missing authorization checks

Purpose of paper
!  Expose design weaknesses in memory management subsystems of

Linux

!  Introduce new methodology for mounting ret2dir attacks

!  Bypassing current security methods embedded in chip
architectures

!  Intel and ARM introduced SMEP, SMAP, and PXN processor features
in an attempt to prevent control flow transfers from the kernel
space to the user space

!  Evaluate effectiveness of ret2dir attacks

!  Present new designs and implementation of memory schemes to
mitigate future attacks

!  Implemented with minimal overhead

Return to User Exploits

!  Made possible by a shared address
space between user and kernel
processes

!  Attackers can hijack privileged
execution paths and redirect them to
the user space

! Allows attackers to execute shell
code with kernel privileges

Source: http://hypervsir.blogspot.com/2014/11/
defending-against-ret2dir-attacks.html

Ret2usr continued

!  Carried out through memory corruption bugs in kernel
code

!  Attacks aim for control data

! Return addresses

! Function pointers

! Pointers to critical data structures in kernel’s heap

!  Attacks focus on data that affects the control flow of the
kernel

! Allows attack to reroute execution to user space code

!  Attacks can be carried out on multi-OS and multi-
architectures

Protections against ret2usr

!  Several defense mechanisms exist

!  PaX KERNEXEC and UDEREF

!  prevents control flow transfers from kernel to user space

! Relies on memory segmentation that returns a memory
fault whenever privileged code attempts to dereference
a pointer

! Memory remapping contains significant overhead

! Ported to ARM architecture but are supported for only A
Arch32

Protections continued

!  SMEP/SMAP/PXN

!  Intel features that facilitate stronger address space
separation that are similar to KERNEXEC and UDEREF

!  kGuard

! Cross-platform compiler extension that protects kernel
without relying on hardware features

! Enforces address space segregation by preventing
transitions between privileged execution paths to user
space at compile time

Attack overview

!  Linux’s design trades weaker kernel to user segregation in
favor of higher performance

!  Research findings show vulnerabilities rooted in the Linux
memory management that can be exploited to weaken
memory isolation between kernel and user space

!  Assumes Linux kernel with ret2usr protection mechanisms
previously discussed

!  Assume an unprivileged attacker with local access

!  Do not make assumptions about the type of target—either
data or code

New Threat Model
!  Implicit physical memory sharing between user processes

and the kernel allow attackers to deconstruct the isolation
offered by the ret2usr protections

! Made possible through process called physmap

! Large virtual memory region inside kernel address
space that contains direct mappings to physical
memory

! Allows kernel to allocate dynamic memory efficiently

!  Although physmap is unique to Linux, other OSes have
similar functions

!  This means the memory of an attacker controlled user
process is accessible through a kernel synonym

Mounting a ret2dir attack
!  First step in attack is to place the exploit code(“payload”)

in the user space

!  It is necessary to understand how physmap operates in
order to locate the physical kernel space synonyms for the
payload

! Physmap is architecture independent

! The mapping between the virtual address space and
the physical memory always starts at a fixed known
location

!  In x86-64 architecture physmap is mapped as RWX
(readable, writable, executable) in almost all kernel
versions

Locating Synonyms
!  Locating synonyms relies on accessing pageframe information

available through the pagemap interface of the /proc filesystem

!  This pageframe information is available to all users including non-
privileged users on all major Linux distributions

!  Once the virtual page number is found, the physical synonym can be
calculated

!  Due to aforementioned fixed starting point in memory space

!  For systems with partial direct-mapped Ram mm allocates zones for
page frame requests

!  Attackers exploit the levels of zones by making repeated memory
allocation calls forcing mm into lower and more privileged zones

!  Once a lower zone is allocated, it is guaranteed to be present in physmap
and susceptible to the previous vulnerability

Locating synonyms with physmap
spraying
!  In case where PFN information is unavailable, attack can work

backwards

!  Pick arbitrary physmap address and place exploitable payload in
mapped user page

!  This is achieved in a similar way to heap spraying by exhausting the
address space with copies of the exploit payload

!  Done similar to previous PFN attacks using continuous memory
calls until mm swaps “sprayed” pages to disk

!  In order to continuously tie up memory, background processes
write access allocated memory pages to ensure mm does not
reallocate the page

!  This method has a probability of success as high as 96%

Bypassing ret2usr security

!  Using the above methods to find synonyms and exploit
physmap attackers are able to corrupt kernel data
pointers kdptr and kfptr

!  Because security methods for preventing ret2usr kernel
attacks focus on the segregation between user space and
kernel space memory, attacks can overwrite kernel data
pointers with data located in the synonym memory pages
of the payload exploit

!  Once the attackers control a kernel pointer they have the
capability to change the memory access rights of user
pages—specifically the pages where the payload is located

! Due to the RWX vulnerability of phymap previously
discussed

Security evaluation
!  Researchers took 8 ret2usr exploits and ran them against

both protected and unprotected kernels

! Results were as expected: all exploits succeeded
against nonhardened kernels and failed against
hardened kernels

!  Exploits were then modified to carry out ret2dir exploits
instead of ret2usr

! Newly designed exploits were able to successfully
bypass all security mesures in place for ret2usr

! For attacks utilizing physmap spraying the probability
of success increased with size of memory

! For 1Gb systems 65%, 2Gb 88%, and 16GB 96%

Defending against ret2dir attacks

!  Initial security advancements can be found by increasing
permission levels needed to access /proc filesystem—
eliminating ability of an attacker to gain pageframe
information

!  Researchers present a new page frame ownership called
eXclusive Page Frame Ownership (XPFO) for Linux kernel
that provides protection against ret2dir attacks

! System is designed to minimize performance overhead

! Done by leaving physmap and kernel components that
interact with buddy allocator untouched

XPFO
!  Thin management layer that enforses exclusive page

frame ownership

! Page frames may never be assigned to both the kernel
and the user space

!  Whenever a page frame is assigned to a user process XPFO
unmaps its respective synonym from the physmap

! Ensures malicious code can no longer be injected into
the kernel space

!  When a page frame is released back to the kernel XPFO
maps the corresponding pages back into physmap

! Process must ensure pages are sanitized before
returning them to the kernel

Evaluation

!  XPFO provides protection against ret2dir attacks but does not protects against
attacks that use generic data sharing between the user and kernel space

!  XPFO was implemented on the kernel versions previously used to test the
effectiveness of the ret2dir attacks

!  The same set of attacks were carried out against the systems with XPFO

!  In each scenario XPFO was able to prevent the attack

!  XPFO introduces minimal overhead

!  Ranging between .18-2.91%

!  XPFO is available at http://www.cs.columbia.edu/~vpk/research/ret2dir/

Conclusion

!  As kernel code bases continue to expand and OS level applications continue to
become more secure, kernel based attacks will become more prevalent

!  Although the paper specifically targets Linux kernels, the ret2dir attack can
be modified for many different machines

!  Systems that are designed for increased performance often create
vulnerabilities in the memory management processes

!  In the future kernels need to be designed with increasing security measures to
combat the increase in attacks

!  The paper shows there are methods for implementing more secure systems
while maintaining current efficiency

Reference

!  ret2dir: Rethinking Kernel Isolation. Vasileios P. Kemerlis, Michalis
Polychronakis, and Angelos D. Keromytis. In UsenixSecurity'14.

ret2dir:(Rethinking(Kernel(Isola4on(
(

Vasileios(P.(Kemerlis,(Michalis(Polychronakis,(and(
Angelos(D.(Keromy4s.(In(UsenixSecurity'14(

Wayne(State(University(CSC(6991(Advanced(Computer(Security(1(

Paper(Discussion(
•  Lucas(Copi(
•  CSC(6991(
•  OS(Security(
•  The(paper(ret2dir:(Rethinking(Kernel(Isola4on(discusses(the(increase(in(kernel(based(aPacks(and(the(

reimplementa4on(of(aPacks(that(were(previously(used(as(ret2usr(aPacks.(The(paper(details(the(
technologies(currently(employed(by(several(architectures(to(combat(ret2usr(aPacks(and(suggests(a(
new(page(frame(management(system(to(combat(future(aPacks.(

•  While(current(architectures(have(methods(in(place(to(ensure(the(segrega4on(of(the(user(and(kernel(
space(and(thus(prevent(ret2usr(aPacks,(new(aPacks(are(able(to(leverage(vulnerabili4es(in(Linux(
kernel(distribu4ons(to(carry(out(similar(aPacks(in(a(different(fashion.(Ret2dir(aPacks(u4lize(the(
synonyms(of(user(space(pages(to(overwrite(kernel(data(pointers(and(carry(out(malicious(code(with(
higher(privilege(levels.(Because(the(current(security(methods(for(preven4ng(ret2usr(aPacks(focus(
only(on(the(segrega4on(between(the(kernel(and(user(space,(aPackers(are(able(to(overwrite(kernel(
pointers(with(malicious(data(stored(in(a(kernel(level(page(synonymously(mapped(to(a(user(memory(
page.(The(synonyms(can(be(calculated(due(to(the(memory(alloca4ng(processes(fixed(star4ng(point(
or(through(a(process(known(as(physmap(spraying.(

•  The(paper(also(details(a(new(management(system(that(prevents(ret2dir(aPacks(by(forcing(pages(to(
be(mapped(exclusively(to(the(user(or(kernel(space.(This(new(management(layer(known(as(XPFO(
was(able(to(prevent(all(of(the(ret2dir(aPacks(carried(out(on(the(Linux(distribu4ons(in(the(previous(
sec4ons(of(the(paper(and(was(implemented(with(minimal(and(oYen(negligible(overhead.(

Wayne(State(University(CSC(6991(Advanced(Computer(Security(2(

Paper(Discussion(
•  Zhenyu(Ning(
•  CSC(6991(–(Advanced(Computer(System(Security(

•  As(well]known(ret2usr(aPacks(has(been(prevented(from(both(architectures(of(Inter(and(that(of(ARM(by(a(series(
features(like(KERNEXEC,(UDEREF,(SMEP,(SMAP,(PXN(and(kGuard,(this(paper(present(a(similar(aPack(named(ret2dir(
which(can(bypass(all(the(protec4on(mechanisms(men4oned(above.(

•  This(aPack(leverages(vulnerabili4es(of(a(memory(area(named(physmap,(which(is(shared(by(kernel(space(and(user(
space(using(a(virtual(memory(aliases(for(bePer(performance(of(alloca4ng(and(managing(dynamic(memory.(Ret2dir(
aPack(firstly(try(to(allocate(memory(of(certain(size,(and(then(get(both(its(the(page(frame(number(PFN)(and(the(
corresponding(memory(address(alias(in(physmap(by(predefined(formulas.(If(the(aPacker(needs(more(physical(
con4guous(memory,(he(can(repeat(this(alloca4ng(un4l(he(gets(con4guous(PFNs.(Then(the(aPack(can(corrupt(a(
kernel(data(pointer(or(func4on(pointer(with(arbitrary(value(from(a(user]space(address,(as(it(is(also(a(kernel]space(
address(in(physmap.(AYer(that,(aPack(similar(to(ret2usr(can(be(done(without(constraining(of(protec4on(
mechanisms.(If(memory(addresses(in(physmap(are(marked(as(non]executable,(ROP(can(be(used(to(conquer(it.(

•  The(paper(also(concludes(an(exclusive(page(frame(ownership(scheme,(XPFO,(for(the(Linux(kernel(to(defend(ret2dir.(
This(scheme(unmap(memory(from(physmap(when(the(memory(is(assigned(to(a(user(process(and(map(it(back(again(
when(the(user(process(releases(it(back(to(kernel.(Though(XPFO(can(efficiently(defend(ret2dir,(other(kinds(of(data(
sharing(between(user]space(and(kernel]space(may(also(achieve(similar(aPacks.(

•  EndFragment(

Wayne(State(University(CSC(6991(Advanced(Computer(Security(3(

Paper(Discussion(
•  Sharani(Sankaran(
•  CSC6991(Advanced(Computer(Security(

•  This(paper!ret2dir:!Rethinking!Kernel!Isola4on((mainly(discusses((to(redirect(the(corrupted((kernel(
pointers(residing(in(the(user(data(space.(In(this(paper(they(implement(the(implicit(page(frame(
sharing((can(be(leveraged(for(the(complete(circumven4on(of(soYware(and(hardware(kernel(
isola4on(protec4ons(.((

•  (A(new(kernel(exploita4on(technique(is(also(implemented((return]to]direct]mapped(memory(
(ret2dir),(which(bypasses(all(exis4ng(ret2usr(defenses,(namely(SMEP,(SMAP,(PXN,(KERNEXEC,(
UDEREF,(and(kGuard.(Thus(a(fundamental(design(weakness(in(memory(management(subsystem(by(
linux(with(the(introduc4on(of(ret2dir(aPacks.(Then(the(2(techniques(which(forcing(user]space(
exploit(payloads(to(“emerge”(within(the(kernel’s(direct]mapped(RAM(area.(evaluate(the(
effec4veness(of(ret2dir(aPacks(using(a(set(of(nine(exploits(against(different(LINUX(kernel(
configura4ons.(The(design,(implementa4on,(and(evalua4on(of(an(exclusive(page(frame(ownership(
scheme(for(the(Linux(kernel.(

•  XPFO(is(a(thin(management(layer(that(enforces(exclusive(ownership(of(page(frames(by(either(the(
kernel(or(user]level(processes(that(prevents(e(implicit(sharing(of(physical(memory(

Wayne(State(University(CSC(6991(Advanced(Computer(Security(4(

Paper(Discussion(
•  Hitakshi(Annayya(

•  The(paper(“ret2dir:(Rethinking(Kernel(Isola4on”(discusses(about(new(aPack(technique(called(return]to]direct]
mapped(memory(](ret2dir(which(bypass(all(the(exis4ng(defense(such(as(namely(SMEP,(SMAP,(PXN,(KERNEXEC,(
UDEREF,(and(kGuard(of(ret2usr(–(is(an(another(aPack(which(redirects(corrupted(kernel(pointers(to(data(residing(in(
user(space.(Ret2dir(is(much(reliable(against(these(architectures(x86,(x86]64,(AArch32,(and(AArch64(Linux(targets.(
The(paper(also(discusses(about(defending(technique(for(ret2dir(aPack((linux(kernel)(à(page(frame(ownership(
scheme(with(negligible(run4me(overhead.(

•  Ret2dir(aPack(threat(model(deeply(rooted(into(the(architecture(of(the(Linux(memory(management(subsystem(
(mm),(which(can(be(abused(to(weaken(the(isola4on(between(kernel(and(user(space.(

•  Defending(against(ret2dir(aPack(presents(the(design(of(an(eXclusive(Page(Frame(Ownerwhip((XPFO)(scheme(for(
the(Linux(kernel(that(provides(effec4ve(protec4on(with(low(overhead(which(hinders(but(cannot(prevent(ret2dir(
aPacks.(

•  Limita4ons(of(XPFO(
•  XPFO(does(not(prevent(data(sharing(between(kernel(and(user(space.(

•  To(evaluate(the(effec4veness(of(the(proposed(protec4on(scheme,(XPFO(patch(to(each(of(the(six(kernel(versions(
tested(ret2dir(exploits(when(XPFO(was(enabled.(In(all(cases,(XPFO(prevented(the(exploita4on(aPempt.(Overall,(
XPFO(introduces(a(minimal(overhead,(ranging(between(0.18–2.91%.(

Wayne(State(University(CSC(6991(Advanced(Computer(Security(5(

Term(Project(Proposal(

•  Next(class:(Proposal(discussion(
(
•  Prepare(a(10]minutes(presenta4on(
– Define(the(problem(
– Explain(related(work(
– State(your(new(approach(

Wayne(State(University(CSC(6991(Advanced(Computer(Security(6(

