Wayne S Universi

Evading Android Runtime Analysis
via
Sandbox Detection

Timothy Vidas, Nicolas Christin
Carnegie Mellon University

Presen

CSC 6991 Advanced Compu ecu

NV

Contents

Background

Introduction

Techniques used to detect a runtime analysis in Android
Evaluation

Conclusion

References

o Uk WwWhE

Wayne S Universi CSC 6991 Advanced Compu ecu

NV

NV

Motivation

The mobile app market is truly a global phenomena. In 2012 alone, there were 45 billion
apps downloaded.

The increased computing power and network connectivity is attracting the attention of
attackers, looking to peddle malware on innocent mobile bystanders.

The mobile application ecosystem is lacking in strong analysis tools and techniques.

Open Question???

Recent years witness colossal growth of
Android malware

700000
600000
500000
400000
300000
200000

100000

Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan
2010 2011 2012 2013 2014

Source: SophosLabs

https://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-mobile-security-threat-report.pdf?la=en

Wayne State University CSC 6991 Advanced Computer Security 4

Wayne State University

ANDROID MALWARE TYPES

001001000101 ° ot
o x
10 011
Adware Spying Tool Rooter Data Stealer
Persistently Sends out GPS location, Allows attackers to Steals and sends
pushes ads as tracks text messages send commands to specific information
urgent notifications. and call log. the affected device. ~ from the user’s phone

to cybercriminals.

4 i_] g "
AS Al .H
Click Fraudster

Subscribes infected Abuses mobile devices Downloads other malware
phones to premium services via pay-per-click and malicious app onto

without the user's online ads. infected devices.
authorization or knowledge.

Premium Service Abuser Malicious Downloader

https://www.google.com/search?q=cumulative+android+malware
+samples&espv=2&biw=1366&bih=623&source=Inms&tbm=isch&sa=X&ved=0CAcQ_AUoAWoVChMIqL2C7KuXyAIVSQySChOM-

wL5#imgrc=U1HeMrNwOavuuM%3A

CSC 6991 Advanced Computer Security

Y.L

N

v

NV

Most dangerous Android malware attacks:

* Fake Banking Apps: This lured the customers into entering their online
account login details.

* Android.Geinimi: This corrupted many legitimate Android games on Chinese
download sites.

* DroidDream: It infected devices, breached the android security sandbox and

stole data.
* AndroidOS fake player: It seems to be a media player and silently sends SMS

to premium SMS numbers.

NV

Introduction

* When a new piece of malware is discovered, it must be analyzed in order to
understand its capabilities and the threat it represents.

 Techniques for detecting Android runtime analysis systems often rely on
virtualization or emulation, to process mobile malware.

* Dynamic analysis, consists of executing the malware in a controlled
environment to observe effects to the host system and the network.

Wayne S

Universi

NV

The primary contribution of this paper is to demonstrate that dynamic
analysis platforms for mobile malware authors may still employ

virtualization or emulation detection to alter behavior and ultimately
evade analysis or identification

8
CSC 6991 Advanced Compu ecu

Android Emulator

Y:-5 /.

Tuesday, December 28
€ _CEArNNg 550%)

™Y Y T TR TR TR T
U . Py P Ry p—y —— Y

e Can run virtual mobile devices on a computer
e mimics all of the hardware and software features of a typical mobile device

Wayne State University CSC 6991 Advanced Computer Security

YL

N

v

NV

Android Emulator

The Android SDK includes a mobile device emulator — a virtual mobile device that
runs on your computer. The emulator lets you develop and test Android
applications without using a physical device.

/)
Techniques used to detect a runtime analysis "

in Android

* Differences in behavior
 Performance
 Hardware and software components and

* Those resulting from analysis system design choices

Wayne State University

Emulator Detection

Differences in behavior

Kxﬁ

method Value meanin
wid. armea 1s likely emulator

Buld ABI1Z unknown 1s ikely emulator
Build. BOARD unknown 1S emulator
Buld BRAND generic 1s emulator
Buld. DEVICE generic 1S emulator

Builld FINGERPRINT genericy | 1s emulator
Buld HARKDWAKE goldns 1S emulator
Buld HOST android-testyy 1s likely emulator
Buwld.ID FRF91 1s emulator
Bulld MANUFACTURER unknown 1S emulator
Build MODEL sdk 1S emulator

 Builld PRODUCT sdk is emulator
Buld RADIO unknown 1S emulator
Buld SERIAL null 1s emulator
Buld. TAGS test-Keys 1S emulator
Buld . USER android-build 1S emulator
TelephonyManager.getDeviceld() AllO's 1s emulator
TelephonyManager.getlinel Number() 1533535 2155xXXT 1s emulator
TelephonyManager. getNetworkCountrylso() us possibly emulator
TelephonyManager. getNetworkType() 3 possibly emulator (EDGE)
TelephonyManager. getNetworkOperator().substring(0,3) 310 1s emulator or a USA device (MCO)T
TelephonyManager. getNetworkOperator().substring(3) 260 1s emulator or a T-Mobile USA device (MNC)
Te le%onyﬂanager.get}’hone‘l'ype() 1 possibly emulator (GSM)
TelephonyManager. getSimCountrylso() us possibly emulator
TelephonyManager. getSimSerial Number() SOO12105211118510720 1s emulator OR a 2.2-based device
TelephonyManager. getSubscriberid() 3 1026000000000011 1s emulator
TelephonyManager. get Voice MailNumber() 15552175049 1s emulator

http://users.ece.cmu.edu/~tvidas/papers/ASIACCS14.pdf

CSC 6991 Advanced Computer Security

12

Emulator Detection

Differences in performance

CPU Performance

Created a Java Native Interface (JNI) application for Android using the NDK

" Device Average Round Standard |
Duration (Seconds) Deviation

- PC (Linux) D155 0012

Talaxy Nexus (£.2.3) 16.798 0319
Samsung Charge (2.3.6) 22637 0308

 Motorola Droid (2.2) 23370 0313

T Emulator 2.2 62. 184 7 540

T Emulator 4.2 2 68872 003

http://users.ece.cmu.edu/~tvidas/papers/ASIACCS14.pdf

VK¢
NV

Pi calculation round duration on tested devices using AGM technique (16 rounds). The
tested devices are noticably slower at performing the calculations than related devices

running similar software.

Wayne State University

CSC 6991 Advanced Computer Security

13

Graphical performance " \Ivm
2800 2 3 Y T L 3] 2
OO0

g 2000
Z o
1000
soo |
'l | iLe 4 ts-ql—k; 4
20 0 40 <0 &0 70
Frames Per Second (FPS)
Lainux copg Moc emy TR
Win cona Galaxy Nexus —8—

http://users.ece.cmu.edu/~tvidas/papers/ASIACCS14.pdf

Android 4.2.2 FPS Measurements: Emulators clearly show a low rate, and more of a
bell curve than the Galaxy Nexus which shows almost entirely 59-60 FPS.

Wayne State University CSC 6991 Advanced Computer Security 14

Emulator Detection e

Differences in components

int level = batteryStatus. getIntExtra(BatteryManager . EXTRA_LEVEL, =I):
int scale = batteryStatus. getIntExtra(BatteryManager .EXTRA_SCALE, =1):
float batteryPct = level / (float)scale:

boolean 1sCharging = status == BatteryManager .BATTERY_STATUS_CHARGING ||
status == BatteryManager .BATTERY_STATUS_FULL.

o S N SN B

http://users.ece.cmu.edu/~tvidas/papers/ASIACCS14.pdf

Battery level emulator detection example

If batteryPct is exactly 50% or the level is exactly 0 and the scale is exactly 100, the device
in question is likely an emulator. The level could be monitored over time to ensure it
varies, and the charging status could be used to determine if the battery should be
constant

Wayne S Universi CSC 6991 Advanced Compu ecu 15

NV

Emulator Detection

Differences due to system design

Android-specific design decisions

If an attacker can determine that a device is not actually in use, the attacker
may conclude that there is no valuable information to steal or that the device is
part of an analysis system.

Usage indicators such as the presence and length of text messaging and call logs

Evaluation

Candidate Sandboxes :
 Andrubis
 SandDroid
 Foresafe
 Copperdroid

« AMAT

* Mobile-sandbox and
* Bouncer

NV

NV

Behavior evaluation

The SDK and TelephonyManager detection methods prove successful against all
measured sandboxes.

 The Build parameters, such as HOST, ID, and manufacturer require a more
complex heuristic in order to be useful.

Detecting the emulated networking environment was also very successful

Performance evaluation pRA
N
;- SO0 . -
gL | ﬁ
100 " ' | -
N “ o e = l-ra‘—zs BFer .\m;(o-:\d = = | - ’.t'
(op;}-i?d)“rf:‘; —se— Galaxy \cxn::{\?fx‘a‘; ———

http://users.ece.cmu.edu/~tvidas/papers/ASIACCS14.pdf

FPS measurements for sandboxes: For comparison, a physical Galaxy Nexus was re-
measured using the same application.

The physical device shows strong coupling at 59 FPS and all of the sandboxes demonstrate
loose coupling and wide distribution, indicating that they all make use of virtualization.

Wayne S Universi CSC 6991 Advanced Compu ecu 19

NV

CONCLUSION

* Virtualization is not broadly available on consumer mobile platforms.

* Mobile-oriented detection techniques will have more longevity than
corresponding techniques on the PC.

* Presented a number of emulator and dynamic analysis detection methods for
Android devices

* Designers of dynamic analysis systems must universally mitigate all detections.

NV

References

[12] U. Bayer, P. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scalable, behavior-
based malware clustering. In NDSS, 2009.

[28] J. Oberheide and C. Miller. Dissecting the android bouncer. SummerCon2012, New
York, 2012.

[32] T. H. Ptacek and T. N. Newsham. Insertion, evasion, and denial of service: Eluding
network intrusion detection. Technical report, DTIC Document, 1998.

K\T\(/ﬁ

K\sr\(/ﬁ

Evading Android Runtime Analysis
via Sandbox Detection.

Timothy Vidas and Nicolas Christin. In AsiaCCS'14

\sz//
. . NV
Paper Discussion

Zhenyu Ning,
CSC 6991 — Advanced Computer System Security

Evading Android Runtime Analysis via Sandbox Detection

This paper mainly talks about approaches to detect the virtualization or emulation system from a simple
android application with few or no permissions. To achieve this point, some differences between the
physical device and the virtualization or emulation system on system behavior, runtime performance,
physical components and system design are listed in the paper together with approaches to detect these
differences. After that, these approaches are experimentally proved by the evaluation on some sandboxes
such as Andrubis, SandDroid and Foresafe.

Upon the paper, we can easily conclude that a malware using these approaches can detect the existence
of a virtualization or emulation system and then to perform a different, benign behavior to avoid from
being detected. And as it concluded in the paper, this problem is still an open problem which may need
more and more efforts and research.

But as we learned in previous classes, a hardware based isolated execution environment, such as SMM in
x86, TrustZone in arm and so on, can generally resolve this problem and provide a nearly complete
transparent environment to perform malware analysis.

\sz//
. . NV
Paper Discussion

Sai Tej Kancharla
CSC 6991- Advanced Computer Security
Evading Android Runtime Analysis via Sandbox Detection

The paper "Evading Android Runtime Analysis via Sandbox Detection" by Timothy Vidas and Nicolas
Christin discusses about detecting Emulation or Virtulalization from Android applications which are
commonly accessible to all with few or no permissions. The detection based techniques are divided into 4
classes. They are Behavior, Performance, Hardware and Software Components and lastly System Design.
All the approaches are applied on various widely available sandboxes like Andrubis, SandDroid, Foresafe,
Copperdroid, AMAT, and Bouncer

The paper talks about detecting emulation software relatively easily exploiting some fundamental flaws in
the systems. The paper discusses about how we can detect Emulation using Android API. The paper also
compares about the difference in CPU performance between Emulators and similar physical devices using
crude system of measure duration of lengthy computation. It also discusses about the difference in
Graphical performance which is measured by calculating Frames Per Second(FPS). It also discusses on how
the emulation software cannot encompass all the sensors working on the physical device leading to its
detection easily.

This paper proves that malware exploiting these techniques can easily avoid detection and that could
prove quite harmful. Most of the problems could be solved by changing some fundamental flaws in the
systems excluding the tough to solve problems like hardware related ones. But this problem needs to be
addressed quickly ranging on how fast mobile platform is advancing in the global market.

\sz//
. . NV
Paper Discussion

. Hitakshi Annayya

. Evading Android Runtime Analysis via Sandbox Detection

. This paper “Evading Android Runtime Analysis via Sandbox Detection” by Timothy Tidas and Nicolas Christin presents
different dynamic analysis platforms for mobile malware that purely rely on emulation or virtualization face fundamental
limitations that may make evasion possible. Since there is a rapid increase in mobile malware, the authors did
demonstration and evaluated the techniques by dynamic analysis, consists of executing the malware in a controlled
environment to observe effects to the host system and the network.

. Techniques are classified into four broad classes showing the ability to detect systems based on differences in behavior,
performance, hardware and software components, and those resulting from analysis system design choices. Emulator
detection by difference in behavior is detected through the mobile APl methods and their return values and emulated
networking. Emulator detection by performance is detected by CPU performance and Graphical performance. Emulator
detection by difference in components is by Hardware and software components. For example detecting battery level
emulator. Lastly, emulator detection in differences due to system design is through PC system design decision and Andriod-
specific design decision.

. Evaluation of these techniques are done against the real analysis system such as Andrubis, SandDroid, Foresafe,
Copperdroid, AMAT, mobile-sandbox, and Bouncer. Evaluation report is generated for all the Android APl methods including
for networking but not for HOST methods. The Sensors counts were different from experimented results and Sandbox
exhibit very few sensors.

. Finally, as a conclusion strong dynamic analysis tool for mobile malware still an open question in research fields.

. Advantages:
- Detections are rooted in observed differences in hardware, software and device usage
— Accelerometer values would yield definitive clues that the malware is running in a sandboxed environment
. Limitations:
- Mobile-oriented detection techniques will have more longevity than corresponding techniques on the PC because of Virtualization
- Sensor counts needs to be addressed by techniques to provide all the values

Wayne State University CSC 6991 Advanced Computer Security 4

\sz//
. . NV
Paper Discussion

. Lucas Copi
. CSC 6991
. Transparent Malware Analysis Il

. The paper Evading Android Runtime Analysis via Sandbox Detection focuses on different methods utilized by malware on
the Android platform to detect virtualization and thwart dynamic analysis systems. All of the techniques assume the
permission level of standard applications downloaded from the Google Play store on a standard Android system.

. The paper breaks down emulation detection into three main sections: differences in performance, differences in
components, and differences due to system design. Due to overhead from emulation, malware can utilize performance
differences as a detection method for emulation. On both emulators tested the emulated CPU performance was much
lower than CPU performance of standard Android systems. Additionally, graphical performance measures also showed a
distinct decline due to emulation. Moreover, malware can use several built in Android API’s to detect the difference
between a physical machine and an emulator. Traits such as CPU serial numbers, memory types, network configuration, and
system level software required to monitor hardware (i.e. battery monitor) all display different values and behavior during
emulation than they typically would on a physical device. Finally, stock software components that are traditionally found on
Android devices (i.e. Google Play Store) are rarely present on an emulated environment.

. By checking many of the above features malware can detect the presence of an emulated environment and modify behavior
to display dormant rather than malicious behavior. This reduces the effectiveness of dynamic analysis systems. Although
some emulators have begun to remedy these issues they are still largely immature and present minimal barriers for
malware.

Wayne State University CSC 6991 Advanced Computer Security 5

K\T\(lﬁ

Term Projects Discussion

Wayne State University CSC 6991 Advanced Computer Security 6

