K\T\(lﬁ

Using Hardware Features for
Increased Debugging Transparency

Fengwei Zhang, Kevin Leach, Angelos Stavrou,
Haining Wang, and Kun Sun. In S&P'15.

Presented by Fengwei Zhang

Wayne State University CSC 6991 Advanced Computer Security 1

K\sr\(/ﬁ

Overview

Motivation

Background: System Management Mode
(SMM)

System Architecture

Evaluation: Transparency and Performance

Conclusions and Future Directions

K\sr\(/ﬁ

Overview

Motivation

Background: System Management Mode
(SMM)

System Architecture

Evaluation: Transparency and Performance

Conclusions and Future Directions

K\sr\(/ﬁ
Motivation

e Malware attacks statistics

— Symantec blocked an average of 247,000 attacks per
day [1]

— McAfee (Intel Security) reported 8,000,000 new
malware samples in the first quarter in 2014 [2]

— Kaspersky reported malware threats have grown 34%
with over 200,000 new threats per day last year [3]

 Computer systems have vulnerable applications
that could be exploited by attackers.

K\sr\(/ﬁ

Traditional Malware Analysis

Virtual Machine

Hypervisor (VMM)

Hardware

e Using virtualization technology to create an isolated
execution environment for malware debugging

K\sr\(/ﬁ

Traditional Malware Analysis

Malware

Virtual Machine

Hypervisor (VMM)

Hardware

e Using virtualization technology to create an isolated
execution environment for malware debugging

 Running malware inside a VM

Traditional Malware Analysis

Analysis
Tool

>

>

>

Malware

Virtual Machine

Hypervisor (VMM)

Hardware

K\sr\(/ﬁ

e Using virtualization technology to create an isolated

execution environment for malware debugging

 Running malware inside a VM
* Running analysis tools outside a VM

Traditional Malware Analysis

Analysis
Tool

>

>

>

Malware

Virtual Machine

Hypervisor (VMM)

Hardware

Limitations:

K\sr\(/ﬁ

* Depending on hypervisors that have a large TCB (e.g.,

Xen has 500K SLOC and 245 vulnerabilities in NVD)

* Incapable of analyzing rootkits with the same or higher
privilege level (e.g., hypervisor and firmware rootkits)

* Unable to analyze armored malware with anti-
virtualization or anti-emulation techniques

K\sr\(/ﬁ

Our Approach

>

Analysis . Malware
Tool

> Virtual Machine

Hypervisor (VMM)

Hardware

We present a bare-metal debugging system called MalT that
leverages System Management Mode for malware analysis

* Uses System Management Mode as a hardware isolated
execution environment to run analysis tools and can debug
hypervisors

* Moves analysis tools from hypervisor-layer to hardware-layer
that achieves a high level of transparency

K\sr\(/ﬁ

Overview

* Motivation

* Background: System Management Mode
(SMM)

e System Architecture
* Evaluation: Transparency and Performance

* Conclusions and Future Directions

Wayne State University CSC 6991 Advanced Computer Security 10

Kyz/)/
Background: System I\/Ianagemen'eﬁi“/%m

Mode

System Management Mode (SMM) is special CPU mode
existing in x86 architecture, and it can be used as a
hardware isolated execution environment.

* Originally designed for implementing system functions
(e.g., power management)

* |solated System Management RAM (SMRAM) that is
inaccessible from OS

* Only way to enter SMM is to trigger a System
Management Interrupt (SMI)

e Executing RSM instruction to resume OS (Protected
Mode)

Kyz/)/
Background: System Managemenfﬁi‘%m

Mode

Approaches for Triggering a System Management Interrupt (SMl)

» Software-based: Write to an I/O port specified by Southbridge
datasheet (e.g., Ox2B for Intel)

 Hardware-based: Network card, keyboard, hardware timers

Protected Mode System Management Mode

Highest privilege

Software
SMI

Handler

or Isolated SMRAM

Hardware

Interrupts disabled

Normal OS Isolated Execution Environment

K\sr\(/ﬁ

Background: Software Layers

Application

Operating System

Hypervisor (VMM)

Firmware (BIOS) <— SMM

Hardware

KWW
Background: Hardware Layout

Memory slots

Keyboard

- BIOS Super 1/0 —
Memory bus

Serial port

LPC bus
IDE
SATA
Front-side bus Northbridge Internal bus Southbridge Audio
CPU | (memory controller hub) —
MMU and IOMMU (I/O controller hub) USB
CMOS
PCle bus PCI bus

Graphic card slot PCI slots

K\sr\(/ﬁ

Overview

Motivation

Background: System Management Mode
(SMM)

System Architecture

Evaluation: Transparency and Performance

Conclusions and Future Directions

K\sr\(/ﬁ
System Architecture

* Traditionally malware debugging uses virtualization
or emulation

* MalT debugs malware on a bare-metal machine, and
remains transparent in the presence of existing anti-

debugging, anti-VM, and anti-emulation techniques.
Debugging Client Debugging Server

i) Trigger Y/ = SMI
/ /
2) Debug command , Breakpoint<

GDB-like / / Debugged
Debugger

— 3) Response message ApEEition

handler

Inspect
application

Ksz//

Step-by-step Debugging in MalT

 Debugging program instruction-by-instruction

* Using performance counters to trigger an SMI for
each instruction

Protected Mode

System Management Mode

CPU control flow

1nstq

insto

1nsts

EIP —>

tnsty

Trigger SMI

Trigger SMI

SMM entry

SMM exit

SMM entry

SMM exit

RSM

RSM

SMI Handler

SMI Handler

K\sr\(/ﬁ

Overview

* Motivation

* Background: System Management Mode
(SMM)

e System Architecture
e Evaluation: Transparency and Performance

* Conclusions and Future Directions

Wayne State University CSC 6991 Advanced Computer Security 18

KW)7
Evaluation: Transparency Analy5|s

 Two subjects: 1) running environment and 2)
debugger itself
— Running environments of a debugger
* SMM v.s. virtualization/emulation
— Side effects introduced by a debugger itself
e CPU, cache, memory, I/O, BIOS, and timing
 Towards true transparency

— MalT is not fully transparent (e.g., external timing
attack) but increased

— Draw attention to hardware-based approach for
addressing debugging transparency

KW)7
Evaluation: Performance AnaIyS|s

* Testbed Specification
— Motherboard: ASUS M2V-MX SE
— CPU: 2.2 GHz AMD LE-1250
— Chipsets: AMD K8 Northbridge + VIA VT8237r Southbridge
— BIOS: Coreboot + SeaBIOS

Table: SMM Switching and Resume (Time: us)

Operations Mean STD 95% CI
SMM switching 329 0.08 [3.27,3.32]
SMM resume 458 0.10 [4.55,4.61]

Total 7.87

KW)7
Evaluation: Performance Analy5|s

Table: Stepping Overhead on Windows and Linux (Unit: Times of
Slowdown)

Stepping Methods Windows Linux

T T
Far control transfer 2 2
Near return 30 26
Taken branch 565 192

Instruction 073 349

K\sr\(/ﬁ

Overview

Motivation

Background: System Management Mode
(SMM)

System Architecture

Evaluation: Transparency and Performance

Conclusions and Future Directions

Ksz//

. NV
Conclusions and Future Work

* We developed MalT, a bare-matal debugging system that

employs SMM to analyze malware
— Hardware-assisted system; does not use virtualization or emulation

technology

— Providing a more transparent execution environment

— Though testing existing anti-debugging, anti-VM, and anti-emulation
techniques, MalT remains transparent

Future work

Remote Debugger (“client”)

Debugging Target (“server”)

IDAPro
Tool

Debug command

GDB
Client

GDB
Server

d N SMI Debugged
N | Handler application
\/
Response message

SMM PM

Generic Interaface

\Sx?Z
l'm\illi\jma
References

[1] Symantec, “Internet Security Threat Report, Vol. 19 Main Report,” http:

//www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf,
2014.

[2] McAfee, “Threats Report: First Quarter 2014,"
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2014-summary.pdf.

[3] Kaspersky Lab, “Kaspersky Security Bulletin 2013,” http://media.kaspersky.com/pdf/KSB_2013_EN.pdf.

Wayne State University CSC 6991 Advanced Computer Security 24

\sz//
. . NV
Paper Discussion

Sai Tej Kancharla
CSC 6991 — Advanced Security

Using Hardware Features for Increased Debugging Transparency

The research paper Using Hardware Features for Increased Debugging Transparency Fengwei
Zhang , Kevin Leach , Angelos Stavrou , Haining Wang , and Kun Sun discusses about MalT which is
a debugging framework that uses System Management Mode(SMM) to transparently and debug
Armored Malware.

MalT is executed on 2 machines: The target machine and the Debugging client machine. The basic
process of MalT is that the Debugging machine sends an SMI trigger to make the target machine
enter SMM mode and then we run the debugging code in the SMM. The response generated is sent
to the debugging client for verification. The whole communication between the 2 machines is done
by using GDB like protocol with serial messages.

The advantage of Malt over other systems is that it does not rely on the Operating System but it
relies on BIOS to analyze malware on bare metal. Also since Malt is run on SMM it has smaller
Trust Computing Base (TCB) then other Hypervisor based systems. Also it is capable of debugging
the Hypervisor rootkits and kernel mode drivers cause of unrestricted access in SMM.

\sz//
. . NV
Paper Discussion

Zhenyu Ning,
CSC 6991 — Advanced Computer System Security

Using Hardware Features for Increased Debugging Transparency

In this paper, a new usage of System Manage Mode is introduced to achieve transparently
debugging and analyzing of malware. The MALT system, based on SMM and consisted by a
debugging server and a debugging client, is deployed to insert breakpoints and handle step-by-step
debugging. The debugging client communicates with the debugging server through serial port with
a self-defined protocol to implement a GDB-like debugging experience. Also, MALT did a lot of jobs,
such as dynamic flashing BIOS image, locking SMRAM, modifying timers and so on, to avoid itself
from being detected by malware.

In general, MALT can transparently debug malware armored with anti-debugging, anti-
virtualization and anti-emulation techniques with low TCB, but as a new born, it also has some
flaws. Firstly, when using MALT to debug, we can not use symbols and also we have to provide a
target address but not a target line or instruction to add a breakpoint, which are not so friendly like
other debug tools. Secondly, additional time has to be taken to reflash the BIOS image after every
restart to keep transparent, | guess maybe this can be overcome by a mock hash value just like it
has done to mock time.

\sz//
. . NV
Paper Discussion

. Hitakshi Annayya
. CSC 6991 — Advanced Security

. Using Hardware Features for Increased Debugging Transparency
. In this paper “Using Hardware Features for Increased Debugging Transparency” by Fengwei Zhang, Kevin Leach, Angelos Stavrou, Haining

Wang, and Kun Sun states debugging the advanced malware attacks in virtual machines and emulators create artifacts and weak detection
and to maintain a string defense. To have stealthy malware detection and analysis, authors present MALT, a debugging framework by
leveraging System Management Mode (SMM), a CPU mode in the x86 architecture to transparently debug software on bare-metal and study
armored software.

. The MALT workflow is to run malware on one physical target machine and employ SMM to communicate with the debugging client on
another physical machine. While SMM executes, Protected Mode is essentially paused. The OS and hypervisor, therefore, are unaware of
code executing in SMM. Because we run debugging code in SMM, we expose far fewer artifacts to the malware, enabling a more transparent
execution environment for the debugging code than existing approaches.

. Compared to other debuggers such as BareBox, V2E, Anubis, Ether, VAMPIRE, SPIDER, IDAPRO

. Advantages of MALT:

- Minimal footprint on target machines and more transparency execution environment for bare- metal debugging

— MALT runs the debugging code in SMM without using a hypervisor. Thus, it has a smaller Trusted Code Base (TCB)

- Designed a user-friendly interface for MALT to easily work with several popular debugging clients, such as IDAPro and GDB

- Implemented various debugging functions, including breakpoints and step-by-step debugging.

- MALT induces moderate but manageable overhead on Windows and Linux environments

- Testing MALT against popular packers, antidebugging, anti-virtualization, and anti-emulation techniques, MALT remains transparent and
undetected.

y Limitations of MALT:

- Restoring a system to a clean state after each debugging session is critical to the safety of malware analysis on bare metal, MALT simply
reboots the analysis machine and reimages the disk and BIOS by copying and reflashing.

- In MALT, assuming that SMM is trusted.

Wayne State University CSC 6991 Advanced Computer Security 27

K\sr\(/ﬁ

Reminders

* Paper reviews

* Next class: Transparent Malware Analysis Il
— Android malware
— Hitakshi Annayya will present the paper

— Preparing the slides and sent them to the mailing-
list before the class

— 40 mins presentation + 40 mins discussion

