

Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing

Presented By Sharani Sankaran

Warfarin Dosing

- Warfarin is the most popular anticoagulant drug in use today.
- Anticoagulants are used to prevent stroke and other clotting related incidents.
- Warfarin is one of the oldest and well studied targets in pahrmacogenetics.

• Warfarin is very difficult to prescribe doses for patients correctly.

The IWPC Warfarin Model

Population Dataset

Learning Algorithm

5700 patients from 21 sites in 6 countries, 4 continents

Trained

Model

magery ©2014 NASA, TerraMetrics Terms of Use Report a map error

- Things Collected from each patient are
- Age
- Hieght
- Patients Demographics, relevant parts of their medical history, cor orbidities, smoking status.
 - Independent variables

- weight
- Age
- Relevant Genotype : vkorc1,cyp2c9.
- These 2 aspects of their genotype that researchers previously found effect warfarin metabolism.
- Target outcome: Stable Dosage of Warfarin that achieved optimal therapeutic benefit for the patient.
- The IWPC confirmed that ordinary linear regression is the best • learning algorithm y = ax + b

Pharmacogenetic Warfarin Dosing

Pharmacogenetic Privacy

age	height	weight	race	history	vkorc1	cyp2c9	dose
50-60	176.2	185.7	asian	cancer	A/G	*1/*3	42.0

Model Inversion

Goal: infer the patient's genetic markers from this information

Our Model Inversion

1. Compute all values that agree with given information

	age	height	weight	race	history	vkorc1	cyp2c9	dose		
f(x)	50-59	176.53	144.2	white				42.0	49.7	p=0.23
-	50-59	176.53	144.2	white				42.0	42.0	p=0.75
	50-59	176.53	144.2	white				42.0	39.2	p=0.01

2. Find the most likely values among those that remain

Use the marginal probabilities, model output to approximate this quantity

• The algorithm for computing the likelihood is optimal with the given information given that it minimizes the misprediction rate for these missing medical history ,genotypes

Results

Results

"baseline" means guessing without the model

ccuracy

20

30

10

0

"Ideal" is a classifier trained to predict the genotype

Only 5% lower than ideal prediction

Everything but genotype

Model inversion does nearly as well as a linear model trained from the original data

Just "basic" demographics

Much higher than baseline guessing

VKORC1

Differential Privacy

- Model Inversion is a problem so how to prevent it.
- We examine how to use differential privacy to prevent model inversion.
- A computation is differentially private if any output it produces going to be about as likely regardless of whether or not any particular individual row input to that computation.
- For D D' differing in one row
- $\Pr[K(D) = s] \le \exp(e) * \Pr[K(D') = s]$
- Most Differential mechanism work by adding noise to their output in some capacity according to privacy budget
- There is also evidence of existing work that the attributes of virtual linear models are trained to be protected by adding the noise to the coefficients of those linear models.

Seeking a Remedy

Goal: see if a "reasonable" privacy budget solves the problem

Clinical Efficacy

Simulate clinical trials to make this calculation

Simulated Clinical Trials

Relative to fixed-dose protocol

Conclusion

- Current Method fails to balance privacy and utility which is main concern when Inaccuracy is expensive
- This paper did not observe that a privacy budget significantly prevented model inversion without introducing risk over fixed dosing.