
ZigZag:	Automa,cally	Hardening	
Web	Applica,ons	Against	Client-
side	Valida,on	Vulnerabili,es	

PRESENTED	BY	SAI	TEJ	KANCHARLA	



Content	

•  Introduc,on	
•  Mo,va,on	And	Threat	Model	

•  System	Overview	

•  Invariant	Detec,on	
•  Invariant	Enforcement	

•  Evalua,on	
•  Related	Work	&	Conclusion	



Introduc,on	

•  Modern	Web	Apps	are	increasingly	using	JavaScript	to	move	
program	code	to	client	side.	

•  With	increase	in	use	of	HTML5	API’s	such	as	postMessage	client	
side	Valida,on	vulnerabili,es	are	becoming	increasingly	important	
to	address.	

•  	But	most	detec,on	and	preven,on	techniques	focus	on	sever	side	
and	less	on	client	side.	

•  Hence	there	is	a	need	for	a	system	on	client	side	which	can	protect	
against	these	vulnerabili,es.	



Threat	Model	

•  We	consider	a	webmail	service	that	contains	code	and	resources	of	
both	the	applica,on	and	ads	from	mul,ple	origins.	

•  The	webmail	communicates	with	the	ad	networks	via	postMessage		
to	get	ads	for	target	profiles.	

•  Since	origins	of	ads	are	dis,nct	Same	Origin	Policy	applies,	so	these	
ads	cant	communicate	with	each	other.	

•  Since	the	ad	component	uses	onMessage	and	postMessage	to	send	
and	receive	messages	from	webmail	component	and	responses,	it	
is	vulnerable	to	client	side	valida,on	aWacks.	



Threat	Model	
•  To	tamper	with	the	ad	network,	the	aWacker	must	be	able	to	invoke	
postMessage	in	the	same	context.	

•  This	can	be	achieved	by	using	Cross	Site	Scrip0ng(XSS)	vulnerabili,es	
from	user	content,	framing	the	webmail	service	or	exploi,ng	logic	
vulnerability.	

•  Cross-Site	Scrip0ng	(XSS)	aWacks	are	a	type	of	injec,on,	in	which	
malicious	scripts	are	injected	into	otherwise	benign	and	trusted	web	
sites.	XSS	a%acks	occur	when	an	aWacker	uses	a	web	applica,on	to	send	
malicious	code,	generally	in	the	form	of	a	browser	side	script,	to	a	
different	end	user.	

•  Hence	the	aWacker	has	to	send	an	email	to	vic,m	user	that	contains	the	
XSS	code	or	lure	the	vic,m	into	a	site	that	will	frame	the	webmail	
service.	



System	Overview	

•  ZigZag	is	an	in-browser	anomaly	detec,on	system	that	defends	
against	Client	Side	Valida,on	aWacks	in	JavaScript	Applica,ons.	

•  It	works	by	interposing	between	web	servers	and	the	browser	in	
order	to	transparently	instrument	JavaScript	programs.	

•  The	instrumenta,on	process	works	in	two	phases:	

•  Learning	Phase	
•  Enforcement	Phase	



Learning	Phase	
•  Zigzag	rewrites	program	with	monitoring	code	to	collect	execu,on	traces	of	
client	side	code.	

•  The	traces	are	fed	to	Dynamic	Invariant	Detector	that	extracts	likely	invariants	
or	models.	

•  	Invariant	is	a	condi,on	that	can	be	relied	upon	to	be	true	during	execu,on	of	
a	program,	or	during	some	por,on	of	it.	It	is	a	logical	asser,on	that	is	held	to	
always	be	true	during	a	certain	phase	of	execu,on	

•  The	invariants	extracted	are	learned	over	data	such	as	func,on	parameters,	
variable	types	and	func,on	caller.		

•  However,	there	is	no	guarantee	that	invariants	will	also	hold	in	the	future.	
Therefore,	ZigZag	only	uses	invariants	which	should	hold	with	a	high	
probability	



Learning	Phase	

With	ZigZag,	the	
webmail	service	is	
used	through	a	
transparent	proxy	
to	monitor	the	
code.	



Learning	Phase	

ZigZag	uses	a	
transparent	
proxy	that	
instruments	the	
JavaScript	code,	
augmen,ng	each	
component	with	
monitoring	code	



Learning	Phase	

The	webmail	
service	then	runs	
in	a	training	
phase	where	
execu,on	traces	
of	the	JavaScript	
programs	are	
collected.	



Learning	Phase	

Once	enough	
execu,on	traces	
have	been	
collected,	ZigZag	
uses	invariant	
detec,on	to	
establish	a	
model	of	normal	
behavior.	



Enforcement	Phase	

In	the	
enforcement	
phase	the	
invariants	
learned	in	the	
ini,al	phase	are	
used	to	harden	
the	client	side	
components	



Enforcement	Phase	

The	hardened	
version	of	the	
web	applica,on	
preserves	the	
seman,cs	of	the	
original	for	
comparison	to	
check	for	
devia,ons	



Enforcement	Phase	

Zigzag	also	
incorporates	
run,me	checks	to	
enforce	that	
execu,on	does	
not	deviate	from	
what	was	
observed	during	
the	ini,al	learning	
phase	



Enforcement	Phase	

If	a	devia,on	is	
detected,	the	
system	assumes	
that	an	aWack	has	
occurred	and	
execu,on	is	either	
aborted	or	the	
viola,on	is	reported	
to	the	user	



Invariant	Detec,on	

•  Types	of	Invariants	supported	by	ZigZag	are	



Invariant	Detec,on	
•  Dynamic	program	invariants	are	sta,s,cally-likely	asser,ons	
established	by	observing	mul,ple	program	execu,ons.	

•  Trace	collec,on	and	enforcement	code	is	inserted	at	program	
points	called	checkpoints,	We	capture	program	state	at	checkpoints	
and	compare	subsets	of	these	states	for	each	individual	checkpoint.	

•  There	is	no	guarantee	that	invariants	will	hold	in	the	future,	
Therefore,	ZigZag	only	uses	invariants	which	should	hold	with	a	
high	probability.	

•  These	invariants	are	later	used	to	decide	whether	a	program	
execu,on	is	to	be	considered	anomalous.	



Invariant	Detec,on	
•  ZigZag	uses	program	execu,on	traces	to	generate	Daikon	dtrace	files.	These	
dtrace	files	are	then	generalized	into	likely	invariants	with	a	modified	version	
of	Daikon	developed.	

•  	Daikon	is	capable	of	genera,ng	both	univariate	and	mul,variate	invariants.	
•  Univariate	invariants	describe	proper,es	of	a	single	variable,	like	the	length	of	
a	string,	the	percentage	of	printable	characters	in	a	string,	and	the	parity	of	a	
number.	

•  Mul,variate	models,	on	the	other	hand,	describe	rela,ons	between	two	or	
more	variables,	like	example	x	==	y	or	x<y.	

•  To	reduce	the	overhead	on	system,	ZigZag	checks	func,on	coverage	before	
issuing	invariants	for	enforcement.	It	only	allows	for	enforcement	of	a	
par,cular	func,on	a`er	execu,on	traces	from	four	or	more	training	sessions	
were	collected,	but	this	is	easily	configurable.	



Program	Instrumenta,on	
•  Trace	collec,on	and	enforcement	code	is	inserted	at	program	points	
called	checkpoints.	

•  Checkpoints	are	inserted	at	func,on	prologues	and	epilogues,	since	
events	such	as	receiving	cross-window	communica,on	are	handled	by	
func,ons.	

•  ZigZag	performs	a	lightweight	sta,c	analysis	on	the	program’s	abstract	
syntax	tree	(AST)	to	prune	the	set	of	checkpoints	that	must	be	used.	

•  Func,ons	which	contain	eval	sinks,	XHR	requests,	access	to	the	
document	object,	and	other	poten,ally	harmful	opera,ons	are	labeled	
as	important	and	only	these	func,ons	are	used	in	data	collec,on	and	
enforcement	mode.	



Program	Instrumenta,on	

•  Each	func,on	labeled	important	is	instrumented	with	pre	and	post	
func,on	body	hooks	called	calltrace	and	exi7race.	

•  Iden,fiers	used	are	func,onid	uniquely	iden,fies	func,ons	within	a	
program,	codeid	labels	dis,nct	JavaScript	programs,	and	sessionid	
labels	program	execu,ons.	

•  Every	invoca,on	of	calltrace	increments	and	returns	a	global	
callcounter	vaiable	to	provide	a	unique	iden,fier	such	that	calltrace	
and	exiWrace	invoca,ons	can	be	matched.	



Invariant	Enforcement	
•  Given	a	set	of	invariants	collected	during	the	learning	phase,	ZigZag	then	
instruments	JavaScript	programs	to	enforce	these	invariants.	

•  In	our	implementa,on,	the	calltrace	and	exiWrace	func,ons	perform	a	call	to	
an	enforcement	func,on	generated	for	each	func,on	labeled	important	during	
the	sta,c	analysis	step.		

•  calltrace	examines	the	func,on	input	state,	while	exiWrace	examines	the	
return	value	of	the	original	func,on	

•  These	func,ons	are	generated	automa,cally	by	ZigZag	for	each	important	
func,on	marked.	

•  Should	an	asser,on	be	violated,	a	course	of	ac,on	is	taken	depending	on	the	
system	configura,on.	Op,ons	include	termina,ng	execu,on	by	naviga,ng	
away	from	the	current	site,	or	alterna,vely	repor,ng	to	the	user	that	a	
viola,on	occurred	and	con,nuing	execu,on	



Deployment	Models	

•  First,	applica,on	developers	or	providers	could	perform	
instrumenta,on	on-site,	protec,ng	all	users	of	the	applica,on	
against	CSV	vulnerabili,es.	

•  It	is	possible	to	deploy	ZigZag	as	a	proxy.	In	this	scenario,	network	
administrators	could	transparently	protect	their	users	by	rewri,ng	
all	web	applica,ons	at	the	network	gateway	or	individual	users	
could	tunnel	their	web	traffic	through	a	personal	proxy.	



Limita,ons	
•  The	system	was	not	designed	to	be	stealthy	or	protect	its	own	
integrity	if	an	aWacker	manages	to	gain	JavaScript	code	execu,on	in	
the	same	origin.	

•  So	we	presume	the	presence	of	complementary	measures	to	
defend	against	XSS-based	code	injec,on	like	Content	Security	Policy	
(CSP)	or	any	auto-sani,za,on	frameworks	that	prevent	code	
injec,on	in	web	applica,ons.	

•  If	the	training	set	contains	aWacks,	the	resul,ng	invariants	might	be	
prone	to	false	nega,ves.	

•  If	the	training	set	is	too	small,	false	posi,ves	could	occur.	



Evalua,on		
•  The	ZigZag	is	evaluated	using	4	real	world	case	studies.	First	ZigZag	is	
trained	manually	by	browsing	the	applica,on	with	one	user	for	five	
minutes,	star,ng	with	a	fresh	browser	state	four	,mes.	Next	ZigZag	is	
switched	to	the	enforcement	phase	and	aWempted	to	exploit	the	
applica,ons.	

•  The	aWacks	were	caught	by	the	ZigZag	system	while	the	func,onality	is	
retained	at	the	same	,me.	

•  The	median	overhead	measured	over	Alexa	Top	20	sites	is	2.01s(112%)	
while	the	microbenchmark	was	0.66s.	

•  This	is	a	fair	trading	off	of	some	performance	for	improved	security.	It	is	
acceptable	for	high	assurance	web	applica,ons	and	security-conscious	
users.	



Conclusion	
•  ZigZag	can	be	deployed	by	either	the	website	operator	or	a	third	party.	
Website	owners	can	secure	their	JavaScript	applica,ons	by	replacing	
their	programs	with	a	version	hardened	by	ZigZag,	thereby	protec,ng	all	
users	of	the	applica,on.	

•  	Third	par,es,	on	the	other	hand,	can	deploy	ZigZag	using	a	proxy	that	
automa,cally	hardens	any	website	visited	using	it.	This	usage	model	of	
ZigZag	protects	all	users	of	the	proxy,	regardless	of	the	web	applica,on.	

•  Evalua,on	shows	that	ZigZag	can	successfully	instrument	complex	
applica,ons	and	prevent	aWacks	while	not	impairing	the	func,onality	of	
the	tested	web	applica,ons.	Furthermore,	it	does	not	incur	an	
unreasonable	performance	overhead	and,	thus,	is	suitable	for	real-world	
usage.	




