ZigZag: Automatically Hardening
Web Applications Against Client-
side Validation Vulnerabilities

Content

Introduction

Motivation And Threat Model
System Overview

Invariant Detection

Invariant Enforcement
Evaluation

Related Work & Conclusion

Introduction

Modern Web Apps are increasingly using JavaScript to move
program code to client side.

With increase in use of HTML5 API’s such as client
side Validation vulnerabilities are becoming increasingly important

to address.

But most detection and prevention techniques focus on sever side
and less on client side.

Hence there is a need for a system on client side which can protect
against these vulnerabilities.

Threat Model

We consider a webmail service that contains code and resources of
both the application and ads from multiple origins.

The webmail communicates with the ad networks via
to get ads for target profiles.

Since origins of ads are distinct Same Origin Policy applies, so these
ads cant communicate with each other.

Since the ad component uses and to send
and receive messages from webmail component and responses, it
is vulnerable to client side validation attacks.

Threat Model

To tamper with the ad network, the attacker must be able to invoke
in the same context.

This can be achieved by usinﬁ vulnerabilities
from user content, framing the webmail service or exploiting logic
vulnerability.

attacks are a type of injection, in which
malicious scripts are injected into otherwise benign and trusted web
sites. XSS attacks occur when an attacker uses a web application to send
malicious code, generally in the form of a browser side script, to a
different end user.

Hence the attacker has to send an email to victim user that contains the
XSS code or lure the victim into a site that will frame the webmail
service.

System Overview

ZigZag is an in-browser anomaly detection system that defends
against Client Side Validation attacks in JavaScript Applications.

It works by interposing between web servers and the browser in
order to transparently instrument JavaScript programs.

The instrumentation process works in two phases:
Learning Phase

Enforcement Phase

Learning Phase

Zigzag rewrites program with monitoring code to collect execution traces of
client side code.

The traces are fed to Dynamic Invariant Detector that extracts likely invariants
or models.

Invariant is a condition that can be relied upon to be true during execution of
a program, or during some portion of it. It is a logical assertion that is held to
always be true during a certain phase of execution

The invariants extracted are learned over data such as function parameters,
variable types and function caller.

However, there is no guarantee that invariants will also hold in the future.
Therefore, ZigZag only uses invariants which should hold with a high
probability

Web Server

Learning Phase

With ZigZag, the
webmail service is
used through a
transparent proxy
to monitor the
code.

Instrumentation

Learning Phase

L

Browser

Z1gZag uses a
transparent
proxy that
instruments the
JavaScript code,
augmenting each
component with
monitoring code

Execution
Traces

Learning Phase

Browser
[N

Js

Instrumentad

The webmail
service then runs
In a training
phase where
execution traces
of the JavaScript
programs are
collected.

Learning Phase

Once enough
execution traces

have been
collected, ZigZag
uses invariant
0 - detection to
ikl — = establish a

Invariants

model of normal
behavior.

Web Server

Enforcement Phase

L

Browser

In the
enforcement
phase the
Invariants
learned in the
initial phase are
used to harden
the client side
components

Enforcement Phase

The hardened
@_ _|; version of the
Web Server Browser web application
preserves the
semantics of the
S o original for
B comparison to
check for
deviations

Enforcement Phase

Zigzag also
Incorporates
runtime checks to
enforce that
execution does
not deviate from
what was
observed during
the initial learning
phase

Enforcement Phase

If a deviation is
detected, the
system assumes
that an attack has
occurred and
execution is either
aborted or the
violation is reported
to the user

Invariant Detection

Types of Invariants supported by ZigZag are

Data Types Invariants

All Types

Numbers Equality, inequality, oneOf

String Length, equality, oneOf, isPrintable, isJSON, isEmail, isURL, isNumber

Boolean Equality

Objects All of the above for object properties

Functions Calling function, return value

Invariant Detection

Dynamic program invariants are statistically-likely assertions
established by observing multiple program executions.

Trace collection and enforcement code is inserted at program
points called checkpoints, We capture program state at checkpoints
and compare subsets of these states for each individual checkpoint.

There is no guarantee that invariants will hold in the future,
Therefore, ZigZag only uses invariants which should hold with a
high probability.

These invariants are later used to decide whether a program
execution is to be considered anomalous.

Invariant Detection

ZigZag uses program execution traces to generate Daikon dtrace files. These
dtrace files are then generalized into likely invariants with a modified version
of Daikon developed.

Daikon is capable of generating both univariate and multivariate invariants.

Univariate invariants describe properties of a single variable, like the length of
a strlt?g, the percentage of printable characters in a string, and the parity of a
number.

Multivariate models, on the other hand, describe relations between two or
more variables, like example x ==y or x<y.

To reduce the overhead on system, ZigZag checks function coverage before
issuing invariants for enforcement. It only allows for enforcement of a
particular function after execution traces from four or more training sessions
were collected, but this is easily configurable.

Program Instrumentation

Trace collection and enforcement code is inserted at program points
called checkpoints.

Checkpoints are inserted at function prologues and epilogues, since
events such as receiving cross-window communication are handled by
functions.

ZigZag performs a lightweight static analysis on the program’s abstract
syntax tree (AST) to prune the set of checkpoints that must be used.

Functions which contain eval sinks, XHR requests, access to the
document object, and other potentially harmful operations are labeled
as important and only these functions are used in data collection and
enforcement mode.

Program Instrumentation

Each function labeled important is instrumented with pre and post

function body hooks called and
|dentifiers used are uniquely identifies functions within a
program, labels distinct JavaScript programs, and sessionid

labels program executions.

Every invocation of calltrace increments and returns a global

vaiable to provide a unique identifier such that calltrace
and exittrace invocations can be matched.

Invariant Enforcement

Given a set of invariants collected during the learning phase, ZigZag then
instruments JavaScript programs to enforce these invariants.

In our implementation, the and functions perform a call to
an enforcement function generated for each function labeled important during

the static analysis step.

examines the function input state, while examines the
return value of the original function

These functions are generated automatically by ZigZag for each important
function marked.

Should an assertion be violated, a course of action is taken depending on the
system configuration. Options include terminating execution by navigating
away from the current site, or alternatively reporting to the user that a
violation occurred and continuing execution

Deployment Models

First, application developers or providers could perform
instrumentation on-site, protecting all users of the application
against CSV vulnerabilities.

It is possible to deploy ZigZag as a proxy. In this scenario, network
administrators could transparently protect their users by rewriting
all web applications at the network gateway or individual users
could tunnel their web traffic through a personal proxy.

Limitations

The system was not designed to be stealthy or protect its own
integrity if an attacker manages to gain JavaScript code execution in
the same origin.

So we presume the presence of complementary measures to
defend against XSS-based code injection like Content Security Policy
(CSP) or any auto-sanitization frameworks that prevent code
injection in web applications.

If the training set contains attacks, the resulting invariants might be
prone to false negatives.

If the training set is too small, false positives could occur.

Evaluation

The ZigZag is evaluated using 4 real world case studies. First ZigZag is
trained manually by browsing the application with one user for five
minutes, starting with a fresh browser state four times. Next ZigZag is
switched to the enforcement phase and attempted to exploit the
applications.

The attacks were caught by the ZigZag system while the functionality is
retained at the same time.

The median overhead measured over Alexa Top 20 sites is 2.01s(112%)
while the microbenchmark was 0.66s.

This is a fair trading off of some performance for improved security. It is
acceptable for high assurance web applications and security-conscious
users.

Conclusion

ZigZag can be deployed by either the website operator or a third party.
Website owners can secure their JavaScript applications by replacing
their programs with a version hardened by ZigZag, thereby protecting all
users of the application.

Third parties, on the other hand, can deploy ZigZag using a proxy that
automatically hardens any website visited using it. This usage model of
ZigZag protects all users of the proxy, regardless of the web application.

Evaluation shows that ZigZag can successfully instrument complex
applications and prevent attacks while not impairing the functionality of
the tested web applications. Furthermore, it does not incur an
unreasonable performance overhead and, thus, is suitable for real-world

usage.

