Kx)?

SoK: Introspections on Trust and
the Semantic Gap

Presented by Zhenyu Ning

K52/
Contents v

1. Background

2. Bridge semantic gap

3. Design choices

4. Attacks and defense

5. Bridge semantic gap, again

6. Future work & Conclusion

K52/
Contents v

1. Background

2. Bridge semantic gap

3. Design choices

4. Attacks and defense

5. Bridge semantic gap, again

6. Future work & Conclusion

\\sz//
VMI NV

* Virtual Machine Introspection f
; 1
* Memory, disk, network traffic VM /' App | APP | APP Sibling
’l p \ VM
* Smaller TCB and less CVEs / '@\Guest oS ﬁ\
* A monitor tracks the behavior of guest OS.) \3\/H;pemsor
|/
* Hypervisor, sibling VM, guest OS, hardware ’)\ Hardware

\\z/)
Semantic Gap v

* The gap between high-level expressions and hardware-level

abstractions.

struct task struct {

volatile long state; /* -1 unrunr
void *stack; 0x00000001 Ox00000000 Ox77CD8OOO OXFFFFFFCY 0x00000002 0x00400100 0x00000000 OxOOEOH00O
atomic_t usage; 0x00000000 ©x00000000 0x0OEOO0OO 0x00000000 Ox774B1180 OXFFFFFFCY 0x00000005 0x00000000

OxFFFFOF48 0x00000000 Ox00000000 Ox00000000 OxO0EEOO78 OxO0EOOO78 OxO0000078 OxO000000O
0x00895388 OxFFFFFFCO® 0Ox00000400 0Ox00000000 Ox00400000 Ox00000000 OX74FDB239 OXFFFFFFC9
0x5D11C838 OxFFFFFFC9 0x00000000 0Ox00000000 Ox77CD6C90@ OXFFFFFFC9 0Ox77CD6C9® OXFFFFFFC9
0x00000000 0x00000000 OxB2F71A20 0x0000000C Ox9EDS87DEC 0x00000000 Ox17CAEB3B 0x00000004
Ox9ED64860 0x00000000 Ox00000000 Ox00000000 OxO0000O00 OxO0P00EOO OxO98DDCFE OxO0000000
0x000003D9 0x00000000 Ox3A21FFO4 0Ox00000000 Ox00000019 Ox00000000 Ox291F3BBE 0Ox00000000
0xB2F71A20 0x0000000C ©Ox3C752F94 0x00000003 OxDB8OYES70 0x0000000B 0Ox00000000 OxO0000000

unsigned int flags; /* per process f
unsigned int ptrace;

#ifdef CONFIG_SMP

- . 0X25B2AF14 0x00000A00 OXO4OEAE9D 0x00000000 0x15912610 0x00000000 0X00000000 0x0AAAAAAN
struct llist_node wake_entry; 0x00000000 0x0APHO00O 0xAHOOOOOE 0xHOHOOEE OXOOOOGEEO Ox00EAAD Ox0EARAO OXBAAROON
int on_cpu; 0X000000A5 0x00000000 OxOO0O0O26 0x00000000 0x0AAAAAAO OxOOOOOOOO OXOOO00GAS 0x00AAAAAN

struct task struct *last_wakee;
unsigned long wakee flips;
unsigned long wakee flip_decay ts;

K52/
Contents v

1. Background

2. Bridge semantic gap

3. Design choices

4. Attacks and defense

5. Bridge semantic gap, again

6. Future work & Conclusion

\z//
Bridging the gap v

- Learning and reconstruction

* Code implanting

* Process Outgrafting

| | \\oz//
Learning and reconstruction i

 Learning phase
* Generate data structure signature

* Search phase
* |dentify the instance of data structure in memory

Har

KWW

d-craft data structure signature "NV

* Basec

on expert knowledge of the internal workings of an OS.

* Example: find “init_task”, then go through the linked list.

* Disadvantage: Inflexible

| \\z/)
Source code analysis v

* Based on analysis of source code.

* Leverage static analysis to generate a graph of kernel data
structures.

* Challenge: Invalid pointer, object pools.

\z//
Dynamic learning e

* Based on dynamic analysis of an OS instance.

* Training on a trusted OS instance by manipulate a data
structure of interest.

* Robust signature.

\\z/)
Search phase v

* Linearly Scanning
* Access more memory
*Immune to broken pointers

* Pointer traversing
*Traverse less total memory

* Suffer from cyclicand invalid pointers

* Large overhead leads to low frequency.

\z//
Code implanting v

* Implanting the monitor code into guest OS.
*Implant process
*Implant function

* Challenge: Integrity of implanted code and guest kernel.

| \\yz/)/
Process outgrafting v
* Monitor a untrusted VM from another sibling trusted VM.

* The trusted VM has some visibility into the kernel memory of
untrusted VM.

* Using existing code and read-only heap

| | \Sn?Z,
Kernel executable integrity e
* W XOR X mechanism

- Whitelist Control Flow Integrity(CFl)

* Protect object hooks

K52/
Contents v

1. Background

2. Bridge semantic gap

3. Design choices

4. Attacks and defense

5. Bridge semantic gap, again

6. Future work & Conclusion

K52/
Prevention & detection i

* Detection

* |dentify violation of security policy

* |[ssue: recovery

* Prevention
* Detection and interposition

* Issue: performance overhead

\\sz//
Asynchronous & synchronous e

* Synchronous
* Prevention system, high overhead
* Asynchronous
* Introspect into a snapshot of memory

* Trade-offs across performance & risk

* Assumption: Knowing all hook location, object slab

\\yz))
Snapshotting & Snooping -\

* Snapshotting
* Use PCl device to take RAM snapshots
* Together with value of CPU register
* SMM-based solution
* Suffer from DOS attack

\\yz))
Snapshotting & Snooping -\

* Snooping
* Lightweight hardware

* Monitor writes to sensitive code region and detect updates to
memory from malicious device or driver by DMA

* Use snapshotting device to check data structure invariants or code
integrity

* Do not use commodity hardware and only focused on detection

K52/
Contents v

1. Background

2. Bridge semantic gap

3. Design choices

4. Attacks and defense

5. Bridge semantic gap, again

6. Future work & Conclusion

\\sz//
KOF i

* Kernel Object Hooking(KOH)

* Modify function pointersin kernel text or data section

* Example: override readdir()

* Text section hook
* W XOR X mechanism

* Data section hook

* Move hooks or whitelist

* Assumption: benign kernel, ability of administrator

\Sx?Z
DKOM e

* Dynamic Kernel Object Manipulation(DKOM)

* Modify kernel heap
* Example: remove process from double linked list

* Detect data structure invariant violation asynchronously
* Assumption

* Have found all security-relevant data structures

* These structures all have invariants

* Detector will win the race

\Sx?Z
DKSM e

* Direct Kernel Structure Manipulation(DKSM)

* Change interpretation of data structure

* Different interpretation between training and classification

* Precluded by a generous threat model

K52/
Contents v

1. Background

2. Bridge semantic gap

3. Design choices

4. Attacks and defense

5. Bridge semantic gap, again

6. Future work & Conclusion

\\z/)
Semantic gap v

* Weak semantic gap

* An solved engineering challenge

* Assume guest OS is benign during training and won’t have different
behavior under monitoring

* Strong semantic gap
* An open security problem

* Do not make any assumption about the guest OS

\\z/)
Semantic gap v

* Paraverification
* Light modification to guest OS

* guest OS provide evidence of its action is correct
* Hardware support

* Hardware-assisted memory isolation, like SGX
* Reconstruction from untrusted sources

* Incrementally training

* Inconsistency detection

K52/
Contents v

1. Background

2. Bridge semantic gap

3. Design choices

4. Attacks and defense

5. Bridge semantic gap, again

6. Future work & Conclusion

K52/
Future work v

* Scalability
- Overhead not acceptable in multi-VM system

- Balance of overhead and risk

* Privacy

- evaluate risks of new side channels

\Sx?Z
Conclusion v

* Researches should be refocused on removing the
assumptions of a guest OS to reduce the TCB

* Future solutions should pay more attention to
scalability and privacy concerns

\Sx?Z
Reference v

*Jain B, Baig M B, Zhang D, et al. Sok: Introspections on trust and the

semantic gap[C]//Security and Privacy (SP), 2014 IEEE Symposium on.

IEEE, 2014: 605-620.

\\vz//

NV

Thank you!

