ROP Attack

BYPASSING MEMORY PROTECTIONS USING RETURN ORIENTED
PROGRAMMING

PRESENTED BY AHMAD MOGHIMI

What is ROP Attack?

) Return Oriented Programming attack is a technic to bypass some memory protection.

) Can also be used to bypass antivirus detection mechanism.

1 JOP (Jump Oriented Programming) is another variation of this attack technic.

) Formally we call such technics as Code Reuse attacks.

] Memory protection is a kind of protection designed and implemented in OS and 3 party
protection software to block defend against memory corruption attack.

Memory Corruption Attack

) Programming languages like C, C++ compiles to machine code.

) The programmer is responsible to manage memory via memory management APIs and
pointers.

) It is more efficient but less secure.

) Operating Systems, Browsers, Web servers, Games, and almost any critical software that you
run everyday is developed using these languages and compiled in to machine code.

) Memory corruption occurs when programmer don’t manage memory appropriately especially
in exceptional conditions.

) Memory corruption attack occurs when programmer don’t process user input appropriately in
exceptional conditions.

Memory Corruption Attack — Cont’d

) There are different type of memory corruption vulnerabilities based on the condition and type
of memory which is targeted.
] Buffer Overflows
L) Stack
) Heap
Q..

) Integer Overflow

) Dangling Pointer

) The attacker abuse these vulnerabilities to execute arbitrary machine code in the context of
the running application by sending malicious user inputs. (Exploitation)

Exploitation

Fip Server

Web Server
Web application
Mail server

owser
| Messenger
B Document viewer
= Mail cliert

Software Exploitation Terms

) Application: Binary application (No high level application)
J Compiled to machine code

) Machine code: Binary code can be reverse engineered to assembly language.
) Can be debugged by low level debuggers(Immunity debugger, WinDebug)

) Exploitation: Binary application exploitation
) Abuse user input to cause memory corruption condition in the targeted application.
) Exploit the condition to execute delivered machine code through user input as shellcode.

) Shellcode: Payload
J Independent machine code
) Delivered through user input
) Do malicious activity like Download & execute malware, Open backdoor ports, ...

Stack

) Stack is a kind of memory used by applications.

) Can store user input data, so malicious user data, so can be exploited!

J From now one, We explain everything in the context of x86 CPU.

Stack — Cont’d

Stack:

. LIFO (Last-In First-Out)

) Grows to lower address
] PUSH/POP instructions
) ESP Register

CPU

EIP —LPush Oxcafebabe
Push Oxcafebabe
Pop eax

Add esp, 0x8

Xchg eax, [esp]
Sub esp , 0x4

ESP —»

Address

0x030000A4

0x030000A8

0x030000AC

0x030000B0

0x030000B4

0x030000B8

0x030000BC

0x030000C0O

0x030000C4

Lower
Virtual Memory address

H

Higher
address

Stack — Cont’d

Stack:

. LIFO (Last-In First-Out)

) Grows to lower address
] PUSH/POP instructions
) ESP Register

CPU

Push Oxcafebabe
EIP —»Push Oxcafebabe
Pop eax

Add esp, 0x8

Xchg eax, [esp)
Sub esp , 0x4

Address

0x030000A4

0x030000A8

0x030000AC

ESP —»

0x030000B0

0x0300008B4

0x030000B8

0x030000BC

0x030000C0

0x030000C4

Lower
Virtual Memory address

H

Higher
address

Stack — Cont’d

Stack:

. LIFO (Last-In First-Out)

) Grows to lower address
] PUSH/POP instructions
) ESP Register

CPU

Push Oxcafebabe
Push Oxcafebabe
EIP —»Pop eax

Add esp, 0x8

Xchg eax, [esp]
Sub esp , 0x4

Address

0x030000A4

0x030000A8

ESP —»

0x030000AC

0x030000B0

0x03000084

0x030000B8

0x030000BC

0x030000CO

0x030000C4

Lower
Virtual Memory address

H

Higher
address

Stack — Cont’d

Stack:

. LIFO (Last-In First-Out)

) Grows to lower address
] PUSH/POP instructions
) ESP Register

CPU

Push Oxcafebabe
Push Oxcafebabe
Pop eax

EIP —»Add esp, 0x8

Xchg eax, [esp]
Sub esp , 0x4

EAX = OXxCAFEBABE

Address

0x030000A4

0x030000A8

0x030000AC

ESP —»

0x030000B0

0x03000084

0x030000B8

0x030000BC

0x030000C0O

0x030000C4

Lower
Virtual Memory address

H

Higher
address

Stack — Cont’d

Stack:

. LIFO (Last-In First-Out)

) Grows to lower address
] PUSH/POP instructions
) ESP Register

CPU

Push Oxcafebabe
Push Oxcafebabe
Pop eax

Add esp, 0x8

EIP —pXchg eax, [esp]
Sub esp , 0x4

EAX = OxCAFEBABE

ESP —»

Address

0x030000A4

0x030000A8

0x030000AC

0x030000B0O

0x0300008B4

0x030000B8

0x030000BC

0x030000C0

0x030000C4

Lower
Virtual Memory address

H

Higher
address

Stack — Cont’d

] Every thread of execution has two stack
] User-mode stack

] Kernel-mode stack

) To store various things
) Local variable
) Subroutine parameter
] Return address in function calls
) Current state of registers

Stack — Cont’d

J Function call and stack steps:
1. Push parameters on the stack based on calling convention

Push Return address on the stack
Jump to the function code
Execute Function prologue
Execute the actual subroutine
Execute Function epilogue

N o U RE WD

Fetch the return address from the stack to EIP

Stack — Cont’d

Machine code

Stack

EIP —Push len
Push &message
Call print128

retn

;Print128 function
push ebp

mov ebp, esp.
sub esp, 128

ESP

mov esp, ebp

Stack — Cont’d

CPU

Stack

Push len
Push &message
EIP —PCall print128

retn

;Print128 function
push ebp

mov ebp, esp ESP
sub esp, 128

pop ebp
retn

Stack — Cont’d

CPU

Stack

Push len
Push &message
Call print128

—

Return
address

retn

;Print128 function ESP
EIP —»push ebp

mov ebp, esp
sub esp, 128

mov esp, ebp
pop ebp
retn

Stack — Cont’d

CPU

Push len
Push &message ESP
Call print128

—t>

Return
address

retn

;Print128 function
push ebp

mov ebp, esp.
sub esp, 128
EIP —P.

pop ebp
retn

Stack — Cont’d

CPU

Stack

Push len
Push &message
Call print128

I

Return
address

retn ESP

;Print128 function
push ebp

mov ebp, esp.
sub esp, 128

EIP —P»pop ebp
retn

Stack — Cont’d

CPU

Stack

Push len
Push &message
Call print128

—

Return
address

retn

;Print128 function ESP
push ebp

mov ebp, esp
sub esp, 128

pop ebp
EIP _rretn

Stack — Cont’d

CPU

Stack

Push len
Push &message
Call print128

EIP —p-

retn

;Print128 function
push ebp

mov ebp, esp. ESP
sub esp, 128

mov esp, ebp

pop ebp
retn

Calling Convention

) Some protocol for functions to decide how to pass and return parameters and return value.

J Some conventions:
J__cdecl (Default c language calling convention pushing parameters right-to-left on the stack)

J__stdcall (Used in win32, same as cdecl but the responsibility of clearing parameters from stack is to the
callee function)

J__ fastcall (Pass parameters by general purpose registers instead of stack)

J__thiscall (Object oriented c++ codes passing this object in ecx register)

Stack overflow

J Local variable can store user input data

) If size of user input data is not checked the user can store more data to local variable buffer
) Attacker is able to overwrite memory of other variables on the stack and return address
) Overwriting return address lead to gaining arbitrary EIP value.

1 So it is possible to control EIP (so CPU) to execute user input data as shellcode

< 128byte >4 4by‘te »< 4bvte »

Local variables memory EBP Ret
address

Stack Overflow — Cont’d

Stack

CPU

Push len
Push &message ESP
Call print128

—

Return
address

retn

;Print128 function
push ebp

mov ebp, esp.
sub esp, 128
EIP —P.

Call strcpy

mov esp, ebp
pop ebp
retn

Stack Overflow — Cont’d

Stack

CPU

Push len
Push &message
Call print128

-

ESP

Return
address

retn

;Print128 function
push ebp

mov ebp, esp.
sub esp, 128

Call strcpy
EIP —p-
mov esp, ebp
pop ebp
retn

Stack Overflow — Cont’d

Stack

CPU

Push len
Push &message
Call print128

-t

Return
address

retn

;Print128 function ESP
push ebp

mov ebp, esp
sub esp, 128

Call strcpy

mov esp, ebp
pop ebp EBP = 0x41414141

EIP —rm

Stack Overflow — Cont’d

Stack

CPU

Push len
Push &message

Call print128
Return

address

retn

;Print128 function
push ebp

mov ebp, esp. ESP
sub esp, 128

Call strcoy

mov esp, ebp

pop ebp EBP = 0x41414141
retn

EIP = 0x41414141

EIP —» 2222

Stack Overflow — Cont’d

J The attacker can put any address to EIP register

) EIP register is the register x86 CPU uses to fetch and execute next instruction

1 Shellcode can be delivered through the same user input that caused overflow or any other
user input.

) Attacker put address of user data as shellcode in to the EPI register and execute malicious
code.

Memory Protection (Exploit mitigation)

) Stop the attacker to gain code execution via memory corruption attacks

J In terms of action
) Stop the attacker from gaining control over EIP (Stack Cookie)
) Stop the attacker from finding shellcode address (ASLR)

) Stop the attacker from executing shellcode (DEP)
a..

J In terms of design
) Operating System memory manager
) Compiler code generation

) Memory inspection
a..

DEP (Data Execution Prevention)

J | got control over EIP, Does that mean | can execute shellcode? Unfortunately not.

) The processor don’t allow any code to get executed in any memory sections other than code
segment by default(.text .code)

) You application is not allowed to execute any code from Stack, Heap, Data section

DEP (Data Execution Prevention)

) You can compile your application without the support of this security feature.

) But you can still allocate some memory page and set it flags as executable
) Windows: VritualAlloc

- *nix: mmap

) You can still change permission of a previously allocated memory region
) Windows: Virtualprotect

J *nix: mprotect

ROP

] There are some code sections mapped binary with RWX Permission.

) There are some ret instructions in the code mov esi, eax

pop ebp

1 A group of instructions that ends with ret is called gadget. e

mov eax,esi
ret

shl eax, 2
add esp, Oxc

ret

add eax, 0x10
ret

ROP — Cont’d

) There are some code sections mapped binary with RWX Permission.

ESI = ESI * 2 + 10

) There are some ret instructions in the code mov. eaxest

ret

shl eax, 2
add esp, Oxc

1 A group of instructions that ends with ret is called gadget.

ret

) If we arrange these gadgets together, we can make meaningful code 2dd eax, 0x10
using existing code. ret

mov esi, eax
pop ebp
ret

ROP — Cont’d

] There are some code sections mapped binary with RWX €esp
Permission.

mov eax,esi
ret

shi eax, 2

add esp, Oxc
ret

add eax, 0x10
ret

] There are some ret instructions in the code

J A group of instructions that ends with ret is called
gadget.

mov esl, eax

- If we arrange these gadgets together, we can make f:tpgp‘p'
meaningful code using existing code.
) There is a stack overflow? Attacker is able to put address
of gadgets on the stack instead of real shellcode.
EIP —»

ROP — Cont’d

] There are some code sections mapped binary with RWX
Permission.

EIP i mov eax,esi
ret

ESP

shi eax, 2

add esp, Oxc
ret

add eax, 0x10
ret

] There are some ret instructions in the code

J A group of instructions that ends with ret is called
gadget.

mov esl, eax

pop ebp
ret

- If we arrange these gadgets together, we can make
meaningful code using existing code.

) There is a stack overflow? Attacker is able to put address
of gadgets on the stack instead of real shellcode.

ROP — Cont’d

] There are some code sections mapped binary with RWX

mov eax,esl

Permission. ret
. . . EIP i shl eax, 2
) There are some ret instructions in the code ESP add esp, Oxc

ret

add eax, 0x10
ret

J A group of instructions that ends with ret is called
gadget.

mov esl, eax

pop ebp,
ret

- If we arrange these gadgets together, we can make
meaningful code using existing code.

EAX = ESI
) There is a stack overflow? Attacker is able to put address
of gadgets on the stack instead of real shellcode.

ROP — Cont’d

] There are some code sections mapped binary with RWX
Permission.

mov eax,esi
ret

shi eax, 2

add esp, Oxc
ret

add eax, 0x10
ret

) There are some ret instructions in the code ESP

J A group of instructions that ends with ret is called
gadget.

mov esl, eax

pop ebp.
ret

- If we arrange these gadgets together, we can make
meaningful code using existing code.

EAX = ESI
EAX = EAX = 2

) There is a stack overflow? Attacker is able to put address
of gadgets on the stack instead of real shellcode.

ROP — Cont’d

] There are some code sections mapped binary with RWX
Permission.

mov eax,esi
ret

shi eax, 2
add esp, Oxc
ep —pret |
add eax, 0x10
ret

] There are some ret instructions in the code

J A group of instructions that ends with ret is called
gadget. Esp

mov esl, eax

pop ebp,
ret

- If we arrange these gadgets together, we can make
meaningful code using existing code.

EAX = ESI
EAX = EAX * 2

) There is a stack overflow? Attacker is able to put address
of gadgets on the stack instead of real shellcode.

ROP — Cont’d

] There are some code sections mapped binary with RWX
Permission.

] There are some ret instructions in the code

J A group of instructions that ends with ret is called
gadget.

- If we arrange these gadgets together, we can make =

meaningful code using existing code.

) There is a stack overflow? Attacker is able to put address
of gadgets on the stack instead of real shellcode.

mov eax,esi
ret

shi eax, 2
add esp, Oxc
ret

EIP i add eax, 0x10

ret

mov esl, eax

pop ebp,
ret

EAX = ESI
EAX = EAX *= 2

ROP — Cont’d

] There are some code sections mapped binary with RWX
Permission.

mov eax,esi
ret

shi eax, 2
add esp, Oxc
ret

add eax, 0x10
ret

EIP —j mov esi, eax

] There are some ret instructions in the code

J A group of instructions that ends with ret is called
gadget.

- If we arrange these gadgets together, we can make o pop ebp.
meaningful code using existing code. =

EAX = ESI
) There is a stack overflow? Attacker is able to put address EAX = EAX * 2

of gadgets on the stack instead of real shellcode.

EAX = EAX + @X10

ROP — Cont’d

) It is possible to write the whole shellcode using ROP Gadgets.

) As a trivial way, most of the time attackers uses small number of gadgets to execute the real
shellcode

) Some examples are ROP Payloads that execute the following functions in windows:
) VirtualAlloc + Memcpy + ret
) Virtualprotect + ret
J LoadLibrary (UNC path)

JOP —Jump Oriented Programming

) Similar to ROP attack but use JMP/CALL instructions instead of RET

) It gives more flexibility when there is not enough proper ROP Gadgets

) Some old ROP mitigations can be bypassed using JOP gadgets.

JOP Sample

1.

(DWORD)(buffer) = imgBase + OXE1E86;
// MOV EAX, [ESI+4] | ADDESI, 4 | ?? | ??
| ?? | ?? | CALL EAX

(DWORD)(buffer+4) = imgBase +
Ox10FBC; // MOV EAX, [ESI+58h] |
MOV ECX, [EAX+8] | ?? | ?? | ?? | ?? | CALL ECX

(DWORD)(buffer+8) = objPointer + 0x14;
(DWORD)(buffer+0xc) = imgBase +

Ox73c2; // ADD ESP, 8h | RETN
(DWORD)(buffer+0x10) = imgBase +

0xD8OF; // XCHG EAX, ESP | ?? | ?? |
POP ESI | RETN

(DWORD)(buffer+0x18) = imgBase + OXEG6FOA;
// CALL LoadLibraryW

(DWORD)(buffer+0x1C) = objPointer + 0x60; // IpLibFileName

Another Code Reuse Attack Scenario

] Antivirus/Protection Software hook some API to see if an untrusted code call a sequence of
APl in a malicious flow

) It is possible to use Code Reuse attack on running processes and bypass detections

Some Proposed Mitigations

J Randomization: Randomize code in image level or instruction level to stop attacker from
arranging predictable gadget sequence

) Control flow integrity (CFl): Create a control flow graph (CFG) from code and monitor any
invalid chain of control flow instructions JMP/CALL/RET based on the graph.

Research |deas?

It is a very old attack but still exist. Research ideas regarding this topic?

