

TrustOTP: Transforming Smartphones into Secure One-Time Password Tokens

He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing

Presented by Fengwei Zhang

- Introduction
- Motivation
- Architecture
- Implementation
- Evaluation
- Summary

- Introduction
- Motivation
- Architecture
- Implementation
- Evaluation
- Summary

One-time Password (OTP)

- A password that is valid for only one login session or transaction
 - Not vulnerable to reply attacks
 - Widely used in Two-factor Authentication
 - HOTP (Hash-based OTP)
 - Event triggered, key & counter
 - TOTP (Time-based OTP)
 - Time synchronized, key & clock
 - Hardware token & software App

Existing Solutions

- Hardware-based
 - RSA SecurID
 - Yubikey
- Software-based
 - Google authenticator
 - McAfee one-time password

- Introduction
- Motivation
- Architecture
- Implementation
- Evaluation
- Summary

Limitation

- Hardware-based --- not flexible
 - Unprogrammable
 - Expensive

- Software-based --- not secure
 - Vulnerable to external attacks

Goals

- Confidentiality
 - Malicious mobile OS cannot compromise the keying material (seed) in the OTP generator
 - It cannot read the OTP
- Reliability and Availability
 - Trusted inputs (e.g., clock time) for the OTP genreator
 - Trusted display
 - OTP works even If mobile OS crashes

Small TCB

TrustZone-related Work

- TrustICE (Sun et al.[1])
 - Isolated Computing Environment in the normal domain
- SeCReT (Jang et al.[2])
 - Secure channel between secure domain and normal application
- Hypervision (Azab et al.[3])
 - Real-time kernel protection in the normal domain
- TrustDump (Sun et al.[4])
 - Reliable Memory Acquisition of the mobile OS
- Smartphone as location verification token for payments (Marforio et al.[5])
- Trusted Language Runtime for trusted applications in the secure domain (Santos et al.[6])

- Introduction
- Motivation
- Architecture
- Implementation
- Evaluation
- Summary

TrustOTP Architecture

- In the secure domain
- Shared I/O device with the rich OS
- Reliable switch between domains

Challenges

- Secure input and display though shared touchscreen
- Reliable switch
- Generator protection
 - Static code
 - Execution environment
- Availability

- Introduction
- Motivation
- Architecture
- Implementation
- Evaluation
- Summary

Security Analysis

- Information leakage
 - Generated OTPs
 - Shared keys
- Control flow tampering
 - Code integrity
 - Execution integrity (e.g., Interrupt)
- Denial-of-service
 - Switch between domains
 - Static & dynamic code
 - Display

Boot Sequence

- Secure storage
 - MicroSD card
- Memory Isolation
 - TZASC (TrustZone Address Space Controller)
 - Watermark mechanism
 - Secure boot
- Secure bootloader
 - Non-secure bootloader
 - Rich OS

TrustOTP Triggering

- Reliable switch
 - Non-maskable interrupt (NMI)
 - The rich OS cannot block or intercept
 - Secure Interrupt (FIQ)
 - The rich OS cannot manipulate
 - Interrupt source (configurable)
 - Physical button
 - Timer

OTP Generation

- Hash-based one-time password (HOTP)
 - Key, counter
- Time-based one-time password (TOTP)
 - Key, Clock

Listing 1: OTP Generation Functions

Parameter	Explanation	
secret	the secret key	
secret_length	length of the secret Key	
moving_factor	secure counter in HOTP	
now	secure clock in TOTP	
time_step_size	time period	
	between two TOTPs	
digits	length of the generated OTP	
output_otp	the generated OTP	

OTP Display

- Secure I/O
 - Display: IPU (Image Processing Unit) + LCD
 - Input: 4-wire resistive touchscreen
- User-friendly manner
 - Rich OS and TrustOTP run concurrently
 - Watchdog timer
 - 1.5 seconds / cycle
 - 0.5 second for display
 - 1 second for input 2~3 numbers

- Introduction
- Motivation
- Architecture
- Implementation
- Evaluation
- Summary

Evaluation

- Freescale i.MX53 QSB
 - A Cortex-A8 1GHz processor
 - 1GB DD3 RAM
 - 4GB microSD card
- Monsoon power monitor
 - Power measurement
 - Power logging

TrustOTP Performance

• Before OTP display (60.48 ms)

Step	Operation	Time (ms)
1	Domain Switching	0.002
2	Context Saving	0.0006
3	TOTP/HOTP Generation	0.048/0.044
4	Background Matching	49.85
5	OTP Drawing	8.029
6	IPU Check	2.22
7	Framebuffer Replacement	0.28

After OTP display (7.52 ms)

Step	Operation	Time (ms)
1	Flushing IPU & Rich OS Recovery	7.47
2	Domain Switching	0.05

Impact on the Rich OS

- Rich OS vs. TrustOTP
- Anutu
 - CPU & RAM
 - I/O devices
- Vellamo

Power Consumption

- Rich OS
 - Average = 2,128 mW
- TrustOTP running
 - Average =2,230 mW
- TrustOTP without display

- Introduction
- Motivation
- Architecture
- Implementation
- Evaluation
- Summary

Summary

- TrustOTP: Hardware-assisted OTP Token on smartphones
 - Security (confidentiality, integrity, availability)
 - Flexibility (various and multiple OTPs)

- Low performance overhead on the Rich OS
 - No need to modify the Rich OS
 - Low power consumption

References

- 1. H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, "TrustICE: Hardware-assisted Isolated Computing Environments on Mobile Devices," in Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'15), June 22-25, 2015.
- 2. J. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, "Secret: Secure channel between rich execution environment and trusted execution environment," in 21st Annual Network and Distributed System Security Symposium, NDSS 2015, February 8-11, 2015.
- 3. A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and W. Shen, "Hypervision across worlds: Real-time kernel protection from the ARM trustzone secure world," in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, November 3-7, 2014.
- 4. H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia, "Trustdump: Reliable memory acquisition on smartphones," in Proceedings of 19th European Symposium on Research in Computer Security (ESORICS'14), September 7-11, 2014.
- 5. C. Marforio, N. Karapanos, C. Soriente, K. Kostiainen, and S. Capkun, "Smartphones as practical and secure location verification tokens for payments," in 21st Annual Network and Distributed System Security Symposium, NDSS 2014, February 23-26, 2014.
- 6. N. Santos, H. Raj, S. Saroiu, and A. Wolman, "Using ARM trustzone to build a trusted language runtime for mobile applications," in Architectural Support for Programming Languages and Operating Systems, ASPLOS '14, March 1-5, 2014