
What the App is That?
Deception and
Countermeasures in the
Android User Interface
LUCAS COPI

Introduction

u  Smartphone and Tablet Usage is becoming
increasingly popular

u  It has become the primary way of accessing
digital media in the US

u Devices carry with them a wealth of confidential
user data

u  This has created attention from cybercriminals

Introduction continued

u  Paper investigates vulnerabilities stemming from devices
running multiple apps at the same time

u  Most devices allow one app to run in the foreground
while multiple apps continue running background
processes

u  This can lead to malicious background apps hijacking
user devices

u  Paper investigates specific style of attacks known as GUI
attacks

u  Create and demonstrate new systems to alert users to
potential malicious GUI activity

Background

u Android platform is based on the Linux OS and is
designed for touch screen devices

u Each app on a device runs in isolation from
others except for well-defined communication
channels

u Apps are contained in apk files that are signed
as a security measure

u Apps are composed of different developer-
defined components: activity, service,
broadcast receiver, and content provider

Background Continued
u  Activity defines a GUI and its interactions with the user input

u  Service performs long running tasks in the background

u  Broadcast Receiver responds to specific system-wide messages

u  Content provider manages data shared with other components
(can be within same app or with different apps)

u  Permissions:

u All apps that perform sensitive operations need specific
permissions

u These are granted at the time of installation

u Some permissions can only be granted to system apps

u  Required permissions and other properties are stores in an apps
manifest file

Android Graphical Elements

u  Apps draw graphical elements by
instantiating system components: views,
windows, and activities

u  A view is the basic UI building block:
buttons, text fields, images are all
examples

u  Activities are controllers that are
associated with views and define actions
when view elements are activated

Graphical elements continued
u  Activities are managed by the activity manager service

and implemented with an activity stack

u The activity on top of the stack is shown to the user

u  Each app can reorder the activities it owns

u  Users request activity switching by using navigation bar
buttons

u  Windows are virtual surfaces that host the graphical
content contained by the views

u Windows are normally automatically managed by the
window manager system service

GUI confusion attacks

u Attack vectors:

u Draw on top

u App switching

u Full Screen

u Enhancing techniques

GUI attacks-draw on top
u  Malicious code attempts to draw graphical elements

over other apps

u Done by adding graphical elements to a window that
is placed over the top activity

u Windows are opened using addView API which
accepts flags

u These flags determine whether the window intercepts
user input or lets it pass through, the type, and the
screen region

u  Types of possible attacks include: UI-intercepting draw-
over with the priority phone flag and non UI-intercepting
draw-over which forwards user input to underlying
windows

GUI attacks-app switch
u App switching attacks steal focus from the top

app and replaces it with an activity from the
malicious app

u Two types: active and passive—active
replaces currently running app while passive
waits for specific user input

u  Several system API’s give apps power to modify
the activity stack

u Startactivity, movetaskto,
killBackGroundProcesses

GUI attacks-Fullscreen

u  Apps have the ability to enter full screen mode which
covers the navigation bar

u  This can be exploited to create fake navigation bars to
fool the user

u  Android has some features built in to mitigate such
attacks

u  However, they can be circumvented with specific flags
and input values of GUI-related API’s

GUI attacks-enhancing techniques
u  Other techniques can be used along with the previous

attacks vectors to increase the effectiveness of the
attacks

u  Techniques to detect how the user is interacting with the
system allow malicious apps to mount more pointed
attacks

u  i.e. waiting for a banking app to open

u  Apps can read messages in the system logs for clues
about the on screen activity

u  getRunningTasks API and the proc filesystem give
information about the current running apps and
activities

Android GUI API

u  Researchers designed a tool to explore every possible
state of the startActivity API

u  As previously noted: startActivity API can be used to
open activities on top of others creating the possibility for
a GUI attack

u  The tool also explored window creating scenarios

u  attempt to find a collection of parameters that would
allow the window to cover the entire screen and
leave the user no way to close it

startActivity API

u  Three things influence how an activity is placed on the stack: type of
calling component, launch mode attribute, flags

u  Program found three scenarios when an activity can be drawn on
top of another:

u The NEW_TASK flag is used

u The activity has the single instance launch mode

u Has a combination of NEW_TASK and CLEAR_TASK flags, NEW_TASK
and MULTIPLE_TASK with launch mode that is not single task and
CLEAR_TASK flag with single task launch mode

Inescapable full screen window
u  Three ways for an app to modify a window to carry out a

GUI attack

u Modify window type

u Specify flags that determine the windows layout

u Calling the setSystemUiVisibility API with specific flags

u  The tool found combinations using the SYSTEM_ERROR
flag could send a window into an inescapable full
screen leaving the user to use the navigation bar or
close the window

Static Analysis

u Researchers designed a tool to study real world
implications of GUI attacks

u  The tool studied how the previous techniques
are used by benign and malicious apps

u  The tool was used to automatically detect
potentially malicious of the techniques

Tool description

u  The tool takes an app’s apk file and outputs a summary
describing any potentially malicious aspects that could
be used to carry out a GUI attack

u  Checks app permissions, identifies calls to API’s detailed
above, applies backward program splicing to check
values for said API’s

u  The tool then analyzes the apps control flow

u  Using all of this it determines whether to flag the app as
malicious

App Classification
u  An app is classified as suspicious based on three

conditions

u The app uses a technique to get information about
the device state

u The app uses an attack vector

u There is a path in the call graph where condition 1
and condition 2 are met

u  Tool was designed to be used during the market level
vetting process

u  Does not include security checks for app lockers and is
meant to be utilized in conjunction with human analysis

Results

u Ran the tool on four sets of apps:

u A set of 500 randomly downloaded apps from
Google Play

u A set of 500 apps downloaded the top free
category on Google Play

u A set of 20 app described as app lockers in
Google Play

u A set of 1260 apps from the Android Malware
Genome project

Results
Continued

Defense Mechanisms
u  Researchers designed a system to alert users to GUI

modifications

u  Currently no way for users to know which application is
being interfaced with, within a GUI

u  New system establishes a trusted path to inform the user

u  Targets three areas:

u Understanding which app is being interacted with

u Understanding real author of the app

u Displaying this information in an efficient manner

u  System based of HTTPS elements in web browsers

Displaying information

u  System uses the unique
identifier (found in the apk
file) in conjunction with
Extended-Validation HTTPS
infrastructure

u  System also uses a secret
user chosen image to
protect validity of its
notifications

Implementation

u  Prototype is based on the Android Open Source Project

u  The target-app detection component of the prototype
checks the activity stack and the window manager
service to ensure users are only interacting with activities
on the top of the stack

u  A constantly active service validates and authenticates
the installed apps in the device

u  The navigation bar is modified to display information
about the activity the user is interacting with

Evaluation

u  Used human subjects to determine effectiveness of
system

u  Subjects were split into three groups:

u Stock android

u Android with new system without instructions

u Android with new system with instructions

u  Subjects then performed four different tasks:

u Accessing facebook normal, accessing facebook
with full screen attacks and with other GUI attacks

Results

Conclusion
u  Paper analyzed many GUI attacks

u  Developed two level defense system

u One at market level

u One at device level

u  Performed a user study demonstrating the effectiveness
of their system

u  All research and implementation was done on Android
4.4 or 4.6

u Although most of the attacks are similar for 5.0 some
implementation for both the attacks and security
measures may be different

