What the App Is That?
Deception and
Countermeasures in the
Android User Interface

LUCAS C @IS

INntfroduction

» Smartphone and Tablet Usage is becoming
INncreasingly popular

» |t has become the primary way of accessing
digital media in the US

» Devices carry with them a wealth of confidential
user data

» This has created attention from cybercriminals

INnfroduction continued

>

>

Paper investigates vulnerabilities stemming from devices
running multiple apps at the same time

Most devices allow one app to run in the foreground
while multfiple apps continue running background
Processes

This can lead to malicious background apps hijacking
user devices

Paper investigates specific style of attacks known as GUI
attacks

Create and demonstrate new systems to alert users to
potential malicious GUI activity

Background

» Android platform is based on the Linux OS and is
designed for touch screen devices

» Each app on a device runs in isolafion from
others except for well-defined communication
channels

» Apps are contained in apk files that are signed
as A security measure

» Apps are composed of different developer-
defined components: acftivity, service,
broadcast receiver, and content provider

Background Continued

» Activity defines a GUI and its interactions with the user input
» Service performs long running tasks in the background
» Broadcast Receiver responds to specific system-wide messages

» Content provider manages data shared with other components
(can be within same app or with different apps)

» Permissions:

» All apps that perform sensitive operations need specific
permissions

» These are granted at the time of installation
» Some permissions can only be granted to system apps

» Required permissions and other properties are stores in an apps
manifest file

Android Graphical Elements

Status Bar

» Apps draw graphical elements by
INnstfantiating system components: views,

windows, and activities

» A view is the basic Ul building block:
buttons, text fields, images are all Actvty |
examples

» Activities are controllers that are
associated with views and define actions
when view elements are activated

Top

Navigation |
Bar

Graphical elements continued

» Activities are managed by the activity manager service
and implemented with an acfivity stack

» The activity on top of the stack is shown to the user
» Each app can reorder the activities it owns

» Users request activity switching by using navigation bar
buttons

» Windows are virtual surfaces that host the graphical
content contained by the views

» Windows are normally automatically managed by the
window manager system service

GUI confusi@hEEiEEE

» Attack vectors:
» Draw on top
» App switching
» Full Screen
» Enhancing techniques

Category

Draw on top

App switch

Fullscreen

Enhancing
techniques

Attack vector

Ul-intercepting draw-over
Non-Ul-intercepting draw-over
Toast message

startActivity API

Screen pinning

moveTaskTo APls
killBackgroundProcesses AP
Back / power button (passive)

Sit and wait (passive)

non-“immersive” fullscreen
“immersive” fullscreen

“inescapable” fullscreen

getRunningTask API
Reading the system log
Accessing proc file system
App repackaging

Mentioned in

[31, [5]
(31, [4]. [5]
(31, [10]

[11]
(6], [12]
[13], [14], [15]

GUI affacks-draw on top

» Malicious code attempts to draw graphical elements
over other apps

» Done by adding graphical elements to a window that
Is placed over the top activity

» Windows are opened using addView APl which
accepts flags

» These flags determine whether the window intercepts
user input or lets it pass through, the type, and the
screen region

» Types of possible attacks include: Ul-intercepting draw-
over with the priority phone flag and non Ul-intercepting
draw-over which forwards user input to underlying
windows

GUI attacks-app switch

» App switching attacks steal focus from the top
app and replaces it with an activity from the
malicious app

» TWO types: active and passive—active
replaces currently running app while passive
walits for specific user input

» Several system API's give apps power to modify
the activity stack

» Startactivity, movetaskto,
killBackGroundProcesses

GUI attacks-Fullscreen

» Apps have the ability to enter full screen mode which
covers the navigation bar

» This can be exploited to create fake navigation bars to
fool the user

» Android has some features built in to mitigate such
attacks

» However, they can be circumvented with specific flags
and input values of GUI-related API’s

GUI attacks-enhancing techniques

» Ofther techniques can be used along with the previous
attacks vectors to increase the effectiveness of the
attacks

» Techniques to detect how the user Is inferacting with the
system allow malicious apps to mount more pointed
attacks

» i.e. waiting for a banking app to open

» Apps can read messages in the system logs for clues
about the on screen activity

» getRunningTasks APl and the proc filesystem give
information about the current running apps and
activities

Android GUI API

» Researchers designed a tool to explore every possible
state of the startActivity API

» As previously noted: startActivity APl can be used to
open activities on top of others creating the possibility for
a GUI aftack

» The tool also explored window creating scenarios

» attempt to find a collection of parameters that would
allow the window to cover the entire screen and
leave the user no way to close it

startActivity API

» Three things influence how an activity is placed on the stack: type of
calling component, launch mode attribute, flags

» Program found three scenarios when an activity can be drawn on
top of another:

» The NEW_TASK flag is used
» The activity has the single instance launch mode

» Has a combination of NEW_TASK and CLEAR_TASK flags, NEW_TASK
and MULTIPLE_TASK with launch mode that is not single task and
CLEAR_TASK flag with single task launch mode

Inescapable full screen window

» Three ways for an app to modify a window to carry out a
GUI aftack

» Modify window type

» Specity flags that determine the windows layout
» Calling the setSystemUiVisibility APl with specific flags

» The tool found combinations using the SYSTEM_ERROR
flag could send a window into an inescapable full

screen leaving the user 1o use the navigation bar or
close the window

TOAST, SYSTEM_ERROR, PHONE,
PRIORITY_PHONE, SYSTEM_ALERT,
SYSTEM_OVERLAY

IN_SCREEN, NO_LIMITS,

HIDE_NAVIGATION, FULLSCREEN,
LAYOUT_HIDE_NAVIGATION,
LAYOUT_FULLSCREEN, IMMERSIVE,
IMMERSIVE_STICKY

Static Analysis

» Researchers designed a tool to study real world
implications of GUI attacks

» The tool studied how the previous techniques
are used by benign and malicious apps

» The tool was used to automatically detect
potentially malicious of the techniques

Tool description

» The tool takes an app’s apk file and outputs a summary
describing any potentially malicious aspects that could
be used to carry out a GUI attack

» Checks app permissions, identifies calls to API's detailed
above, applies backward program splicing to check
values for said API’s

» The tool then analyzes the apps control flow

» Using all of this it determines whether to flag the app as
malicious

App Classification

» An app is classified as suspicious based on three
conditions

» The app uses a tfechnique to get information about
the device state

» The app uses an atfack vector

» There is a path in the call graph where condition 1
and condition 2 are met

» Tool was designed to be used during the market level
vetting process

» Does not include security checks for app lockers and is
meant to be ufilized in conjunction with human analysis

Results

» Ran the tool on four sefs of apps:

» A set of 500 randomly downloaded apps from
Google Play

» A set of 500 apps downloaded the top free
category on Google Play

» A set of 20 app described as app lockers in
Google Play

» A set of 1260 apps from the Android Malware
Genome project

permission name | benignl set | benign2 set | malicious set | app-locker set

R e S U | '|' S GET_TASKS | 32 64% | 80 160% | 217 172% | 19 95.0%
READ LOGS | 9 18% | 35 70% | 240 19.1% | 13 650%

KILL_BACKGROUND_PROCESSES | 3 06% | 13 26% | 13 10% | 5 250%

SYSTEM_ALERT WINDOW | 1 02% | 34 68% 3 02% | 10 50.0%

[]
< O n '|'| l ' d REORDER_TASKS 0 0.0% 4 0.8% 2 0.2% 2 10.0%

technique | benignl set benign2 set | malicious set | app-locker set

startActivity APL | 53 10.6% | 135 27.0% | 751 59.6% | 20 100.0%
killBackgroundProcesses API 1 0.2% 8 1.6% 6 0.5% 20.0%
fullscreen 0 0.0% 22 4.4% 0 0.0% 5.0%

moveToFront API 0 0.0% 0 0.0% 1 0.1% 5.0%

draw over using addView API 0 0.0% 9 1.8% 0 0.0% 15.0%
custom toast message 0 0.0% 1 0.2% 0 0.0% 5.0%

getRunningTasks API 4.6% 13.6% 11.7% 95.0%
reading from the system log 1.6% 3.6% 2.2% 40.0%
reading from proc file system 0.6% 5.2% 3.4% 20.0%

TABLE V: Detection of potential GUI confusion attacks.

Dataset Correctly Detected Notes

benignl set 2 The detected apps are both app-lockers.

benign2 set 23 10 chat/voip app (jumping on top on an incoming phone call/message), 4 games (with disruptive
ads), 4 enhancers (background apps monitoring and killing, persistent on-screen icon over any app),
2 anti-virus programs (jumping on top when a malicious app is detected), 2 app-lockers, and 1
keyboard (jumping on top to offer a paid upgrade).

app-locker set Of the two we are not detecting, one is currently inoperable, and the other has a data dependency
between checking the running apps and launching the attack (we only check for dependency in the
control flow).

malicious set 21 of the detected apps belong to the DroidKungFF'u malware family, which aggressively displays
an Activity on top of any other.

Defense Mechanisms

» Researchers designed a system to alert users to GUI
modifications

» Currently no way for users to know which application is
being interfaced with, within a GUI

» New system establishes a frusted path to inform the user
» Targets three areas:

» Understanding which app is being interacted with

» Understanding real author of the app

» Displaying this information in an efficient manner
» System based of HTTPS elements in web browsers

Displaying information

» System uses the unique o N = @
: e . [US]
identifier (found Iin the apk
c o c c - (a) Task By and Task B> (real Facebook app)
file) in conjunction with
Extended-Validation HTTPS o> O =
I n frO S T rU C -l- U re (b) Task Astq (non-fullscreen attack app)

» System also uses a secref — N = B
user chosen image to
pr O.I. e C.I. V Gli dl.l.y O.l: i.I.S (c) Task A sy (fullscreen, defense-aware, attack app)

noftifications

Implementation

» Prototype is based on the Android Open Source Project

» The target-app detection component of the prototype
checks the activity stack and the window manager
service to ensure users are only interacting with activities
on the top of the stack

» A constantly active service validates and authenticates
the installed apps in the device

» The navigation bar is modified to display information
about the activity the user is interacting with

Evaluation

» Used human subjects to determine effectiveness of
system

» Subjects were split info three groups:
» Stock android
» Android with new system without instructions
» Android with new system with instructions

» Subjects then performed four different tasks:

» Accessing facebook normal, accessing facebook
with full screen attacks and with other GUI attacks

Results

TABLE VIII: Results of the experiment with Amazon Turk users.
Percentages are computed with respect to the number of Valid Subjects.

Group 1: Group 2: Group 3:
Stock Android Defense active. Defense active, briefly explained.
Subjects not aware of the possibility of attacks Subjects aware of the possibility of attacks

Total Subjects

113

102

132

Valid Subjects

99

93

116

Subjects answering correctly to Tasks:

Bl and Bg

67 (67.68%)

70 (75.27%)

85 (73.28%)

Ast.d

19 (19.19%)

60 (64.52%)

80 (68.97%)

Afull

17 (17.17%)

71 (76.34%)

86 (74.14%)

Agra and Ajpyy

8 (8.08%)

55 (59.14%)

67 (57.76%)

Agtq and By and B>

4 (4.04%)

51 (54.84%)

73 (62.93%)

Afuu and B1 and Bz

6 (6.06%)

63 (67.74%)

76 (65.52%)

Agtq and Ay, and By and B;

2 (2.02%)

50 (53.76%)

66 (56.90%)

Conclusion

» Paper analyzed many GUI attacks

» Developed two level defense system
» One at market level
» One at deviceuEaE

» Performed a user study demonstrating the effectiveness
of their system

» Allresearch and implementation was done on Android
4.4 or 4.6

» Although most of the attacks are similar for 5.0 some
Implementation for both the attacks and security
measures may be different

