ON THE FEASIBILITY OF LARGE-

SCALE INFECTIONS OF IOS DEVICES

TieleiWang, Yeongjin Jang, Yizheng Chen, Simon Chung, Billy Lau, and Wenke Lee,
Georgia Institute of Technology

Presented by Sai Tej Kancharla

CONTENTS

* Introduction

" 10S security

* JEKYLL on iOS

* Drawbacks of malicious apps
 Ways of Attack

- Measurement

" Prevention

- Conclusion

WHY IS 105 SO SECURE?

- Data execution prevention
* Encrypted file system

* Privilege isolation

* Sandboxing

- The main difference between iOS and android is

RESTRICTED APP DISTRIBUTION

- All apps have to be reviewed by Apple.

* The apps that pass the review which searches for malicious activity and whether it
violates apple agreements.

- All the apps that exist in App Store are checked and vetted by Apple.
- If the Apps do not have the sign then the app will not be run by the devices.
 The apps integrity cannot be changed after the vetting.

* iOS devices are only allowed to run apps downloaded through app store. (Unless
Jailbroken)

FLOW OF VETTING

> UnlockBoot & 4:02 PM 20 UnlockBoot = 402 PM

Categories Top Charts < Top Charts

! ! # Threes!
4 B | 3 Sirvo LLC >
! ! LinkStore
1 * —~ THARR (2537)
Details

Afterlight
Photo & Video
*hAkk (105)

R 1
Minecraft - Pocket

Edition
[

Guidelines B

Plague Inc.
Garmes
*hkk ke

Heads Up!
Games

EEAY *xrvs 00

red _Top Gharts _Near I Top Charts _ Near

JEKYLL ON IOS

" The app is seemingly benign and was published on App Store.

= Jekyll can be instructed to carry out malicious tasks by reordering and rearranging
the benign functionalities.

= The vetting is assumed to work by executing all the paths of execution by
checking for malicious activity.

= Soif we can change the control flow of the app then we can hide the malicious
activity in plain sight.

= By this we know that the apple vetting though effective does not always identify
the malicious apps

FORMS OF ATTACK THROUGH JEKYLL

Attack Type Attack Description Affected Version

Sending SMS 10S 5.x
Sending Email 10S 5.x
Posting Tweet 10S S.x & 10S 6.x
Invoke Private APIs | Abusing Camera 10S 5.x & 10S 6.x

Dialing 108 5.x &10S 6.x
Manipulating Bluetooth | 108 5.x & 10S 6.x
Stealing Device Info 10S 5.x & 10S 6.x
Attack Kernel Rebooting system 10S 5.x

Attack Other Apps Crashing Mobile Safann | 108 5.x & 108 6.x

DRAWBACKS OF MALICIOUS APPS

- The drawbacks faced by apps like Jekyll and other malicious apps are:

* They do not garner enough user attention hence cannot infect large base of
devices like other apps.

* These apps are mostly installed on accident and run on the same basis.

* If Apple is aware that such malicious apps exist, they could remove them from App
Store immediately.

* They could also disable running of the app remotely through all devices.

MAIN WAY OF ATTACK

 The main way of attack that is discussed is infecting the iOS devices through
infected window pcs by using botnets.

* We assume that the owner of the device is going to connect to the pc to sync,
backup, restore data or upgrade firmware or just for charging.

* We assume the connection to be either through USB or by Wi-Fi based syncing.

I
a
D

USB or Wi-Fi based syncing
| J —
- Syncing, backup, restore, upgrade

FAIRPLAY DRM

- Apple used DRM(Digital Rights Management) technology to prevent piracy of
10S apps.

* Three steps in running the iOS app are:
1. Verifying the apps code signature

2. Perform DRM validation and decrypt the executable file(Since all apps are
encrypted by apple)

3. Runthe decrypted code.

As a result copy of iOS app purchased by Apple IDa does not run on iOS devices of
other Apple ID’s.

FAIRPLAY DRM LOOPHOLES

- Different Apple IDs will receive the same encrypted executable files for different
copies of the same app.

* i0S user will receive a file with the .ipa extension from the App Store. Although the
whole ipa package is unique for each Apple ID, the encrypted executable files inside
these ipa files are the same.

* This proves that the final decryption of the executables is irrelevant to Apple IDs of
the device.

* Itis also found that iTunes can sync apps in its app library to iOS devices through
USB or Wi-Fi connections, even if the iOS devices are bound to different Apple IDs

* This means that when an iOS device with Apple IDb is connected to iTunes with
Apple IDa, iTunes can still sync apps purchased by Apple IDa to the iOS device, and
authorize the device to run the apps

FAIRPLAY DRM

Escrow keybag is used for iTunes syncing, This keybag
allows iTunes to back up and sync without requiring the
user to enter a passcode. When a passcode-locked device
is first connected to iTunes, the user is prompted to enter
a passcode. The device then creates an escrow keybag
containing the same class keys used on the device,

protected by a newly generated key. The escrow keybag
and the key protecting it are split between the device and
the host or server, with the data stored on the device in
the Protected Until First User Authentication class. This is
why the device passcode must be entered before the user
backs up with iTunes for the first time after a reboot

iTunes with Apple DA #Zm> i0S device with Apple ID B
A 4

6 o

N 1. Send sync request (Keybag) —

2. Generate
[AirFair /sync/afsync.rq
JAirFair [sync /afsync.rq.sig
3. Download afsync.rq and afsync.rq.sig
-+

4. Generate

afsyncrs

afsync.rs.sig

5. Upload afsync.rs and afsync.rssig

6. Store

JAirFair /sync/afsync.rs
AirFair /sync/afsync.rs.sig
7. Send MetadataSyncFinish request >

FAIRPLAY DRM

The iOS device generates an authorization request file /AirFair/sync/afsync.rq
and corresponding signature file /AirFair/sync/afsync.rq.sig

Upon retrieving these two files from the iOS device, iTunes generates an
authorization response file afsync.rs and corresponding signature file
afsync.rs.sig.

iTunes then uploads the authorization response and signature files (afsync.rs
and afsync.rs.sig) to the iOS device The iOS device stores the two files in the
directory [AirFair/sync/ and updates its internal state.

Finally, iTunes sends a request to the iOS device to finish the syncing process.

MAN-IN-THE-MIDDLE ATTACK

This working is same as the earlier but instead of the
local pc producing the authorization file, it is sent to a
remote pc which generates the authorization file
afsync.rs and then send afsync.rs to the middle man.
Hence the iOS device connected to a local computer
obtains authorization to run apps purchased by the
iITunes instance running on a remote computer.

This technique is used to run the Jekyll app on different
iOS devices with different Apple IDs without triggering
DRM violation.

The attack demonstrates that even if an app has been
removed from the App Store, attackers can still
distribute their own copies to iOS users.

iTunes with

Botmagter's Apple IDA
Intormet

3a. afsync.
- ync.rq

(victim's omputer)

[

i0S device with

Bot client
qreten Apple ID B

1. Send sync request (Keybg&

2. Generate

JAirFair/sync/afsync.rq

JAirFair/sync/afsync.rq.sig
- 3. afsyncrq and afsync.rq.sig

3b. Generate
afsyncrs

3¢ ifsyncrs

>

4. Generate
afsyncrssig

5.Upload afsyncrs and a'sync.rs.sig

6. Store
JAlrFair fsync/afsync.rs
7.Send MetadataSyncFinish request_¥/A!" Falr/sync/afsync.rssig

DELIVERY OF ATTACKER-SIGNED APPS

* Apple allows developers to install apps into iOS devices through a process called device
provisioning, which delegates code signing to iOS developers:

* A provisioning profile is a digital certificate that establishes a chain of trust. It describes a
list ﬁfdiOS_ devices that are tied to an Apple ID, using the Unique Device Identifier (UDID) of
each device

- However, we found that the installation of provisioning profiles can also be done by
directly sending requests to a service running on iOS devices called “com.apple.misagent”
launched via services like libimobiledevice or more tools.

* A compromised pc can be instructed to provision a plugged in iOS device without user
knowledge.

* The removal of an app is done bg_iss_uing an Uninstall command and app-id to a service on
the device called com.apple.mobile.installation proxy.

* Similarly installation of an app is done by issuing an Install command and app-id to a
service on the device called com.apple.mobile.installation proxy

STEALING CREDENTIALS

- We know that iOS implements each app in a Sandbox environment.

- Allthe apps in the iOS devices have their own unique directories for their files and other apps are
restricted to access it due to the restrictions of sandbox environment.

Many apps like libimobiledevice oriTools
use Apple File Connection(AFC) protocol to
access data through USB cable.

Many developers presume that iOS
sandboxing is secure and store the cookies
in plaintext which could be accessed by the
attacker using tools mentioned(ex:
Starbucks)

The paper shows that by reusing the
cookies, the attacker can login asiOS user
via web services for apps like Gmail and
Facebook.

7 iTools 2013

(] Library

EE Applications E]E File System

-/' Tools

‘[FileSystem(Jailbreaked)

0 iPhoneFU3.13 2 ¢y -l Directory

- [&) Apps(System)
55 Applications El@ Apps(User)

i Media |, VLC Remote

|, Classics

[Photos In Lights
g
AP iBooks i SPBTV
|, Shotgun Pro
|, Speed Test
- ., Instagram
- |, Documents

- |, Instagram.app

Storage

Information

[3] Desktop
I FileSystem

Name

[4)Info.plist 7

[_] Persephone

U Instagram

u Instagram.crc

u Normal_scrambled.h

u Normal_scrambled_fil...
|| Normal_scrambled_fil...

R4 IG-avatar@2x.png
[Ri| comment-new-bg.png

[Ri comment-new-bg@2...
[Rs comment-new-input-...
[Rs| comment-new-input-...

[Rs| corners-bottom.png

Size
198 KB
35 bytes
3.80 MB
30 bytes
342 bytes
3.26 KB
483 KB
478 KB
5.82KB
101 KB
296 KB
337KB
280 KB

/var/mobile/Applications/3CF06244-57E7-4FF5-9DF7-0B1958 C918E9/Instagram.app/Info.plist

© Back (& Refresh €) Delete (2 Newf

Type
PLIST
File

MEASUREMENT

DNS Query Datasets:

The data is collected from two large ISP’s in US from
13 cities in 5 days.

Client ID’s(CID) that queried fewer than 1000 distinct
valid domains are assumed to belong to home
networks.

If a CID queried any C&C domain in a day, we consider
it as having a bot at home for that day.

We utilized unique software update traffic to
fingerprint Mac OS X and exclude them from the
measurement.

The iOS devices are identified when they access e
Weather app, Stocks app, and Location Services.

We found that because of the Apple Push Notification
Service, iOS devices need to constantly query a certain
domain name for push server configurations . We
name this as e iOS heartbeat DNS queries.

- -

Compromised
PCS

1I0S
Devices

MEASUREMENT

DNS Query Datasets:

To pinpoint Windows iTunes, our observation is that if
we observe App Store purchases but do not find iOS
heartbeat DNS queries, then the purchases must
originate from iTunes. This identifies the Windows
iTunes population.

The Bot Population calculated for the day 10/12/2013 is
473,506 infected CIDs.

Mac OS X CID is 6966(2.50%), so excluding this CID we
have 466,540 bot CIDs.

iOS CIDs are 142,907 which is 30.63% of the CIDs

We further identified 112,233 CIDs with Windows
iTunes purchases on the same day, so 112,233(23.70%)
of CIDs have both iOS devices and Windows iTunes but
no Mac OS X.

This proves that 112,223 of CIDs are vulnerable to
malicious attacks.

- -

Compromised
PCS

1I0S
Devices

MEASUREMENT

- Of the 23% devices which are vulnerable there are bound to be devices which use
banking applications.

* we chose mobile domains from eight banks :Citibank, Wells Fargo, PNC, Bank of
America, SunTrust, Bank of the West, and U.S. Bank and examined how many of
those iOS devices queried them. The result is that 4593(4%) of the devices
accessed the banking domains.

* These devices which have existing banking apps could be replaced with malicious
apps that look and feel the same way as the original ones to steal the user data
and cause harm.

ACCURACY OF MEASUREMENT

* There might be more devices vulnerable cause this survey did not consider cellular
traffic and that people can have multiple iOS devices in the same household.

* The data we have only allows us to determine what type of devices are behind an
IP address, but not how many of each. So there is a possibility that there may be
multiple Windows machines and that not all of them maybe infected.

* Due to the mobility of iOS devices, it is possible that the same iOS device appears
in different “infected” IP addresses, which leads to an overestimation of the
number of potential iOS victims.

PREVENTION

* Due to the sheer number of apps in App Store and lack of run time monitors on
iOS devices, malicious apps are only detected when the user detects them.

- Apple should monitor the anomalous Apple IDs that deliver purchased apps to
excessive number of devices and verify them.

* The iOS should also warn the user when app purchased by different Apple ID is
being installed and let the user authorize it.

* The iOS should warn the user when a provisioning profile is installed or prompt
the user the first time an app is run that is signed by an unknown provisioning
profile.

* Third-party developers should be aware that plaintext credentials/cookies could
be easily leaked through the USB interface and store the credentials in a secure
manner to prevent leaks

CONCLUSION

* This paper discussed the feasibility of large scale infection of iOS devices.

- It shows that even the Apple signed apps can be malicious and shoes that iOS is
not as secure as it seems and there are ways around it.

* It also demonstrates different kinds of attacks against the devices using a

compromised computer: delivering Apple signed malicious apps, delivering third
party developer signed malicious apps and stealing of private data and credentials

from iOS devices.

* It also shows that 23% of the CIDs could possible be infected through
compromised systems.

THANKYOU

K\sr\(/ﬁ

On the Feasibility of Large-Scale
Infections of iOS Devices.

Tielei Wang, Yeongjin Jang, Yizheng Chen, Pak-Ho
Chung, Billy Lau, and Wenke Lee. In
UsenixSecurity'14.

\sz//
. . NV
Paper Discussion

Zhenyu Ning
CSC 6991 — Advanced Computer System Security

Usually, we consider iOS system as a much safer system comparing with Android system by the
contribution of both the strict audit and sandbox protection on applications. But in this paper,
author break the conventional view by representing an approach to install arbitrary malicious
applications to the victim’s device which is connected to a compromised computer and steal
sensitive data from the device.

Generally, this achievement is accomplished by a man-in-the-middle attack. Once the iOS device is
connected to the compromised computer, the attack forces the iTunes to send a sync request to
the device. After the computer get the response of the request, attack then force the computer to
send the response to the attack’s computer instead of traditional action which will send an upload
request to the device. The attack then sends the upload request from his computer to the iOS
device through the compromised computer to accomplish the authorization. Once the
authorization is setup remotely, the attack then can delivery arbitrary applications to the device
without the sense of the victim through provisioning process which is original designed for
developers to debug their applications. Also sensitive data like credentials in the cookies can be
stolen in the same way.

Also the author gives a measurement about how many devices may suffer from this kind of attack
by analysis of records of DNS request and network traffics. The result shows that about 23% of bots
are perform this attack to the iOS devices connected to it.

\sz//
. . NV
Paper Discussion

Sai Tej Kancharla
CSC 6991 — Advanced Computer System Security

The paper "On the Feasibility of Large-Scale Infections of iOS Devices" by Tielei Wang, Yeongjin Jang, Yizheng Chen,
Simon Chung, Billy Lau, and Wenke Lee discusses briefly about the security in current iOS and how it is vulnerable
to malicious apps and also shows that it is feasible to large scale infections remotely using botnet.

The paper discusses about the ways in which Apple signs and ensures the integrity of the app in the App Store. It
shows the design flaws in the vetting mechanism which enables the attacker to submit malicious apps to App
Store. The general idea of Apples verification of app is to check whether all the existing paths contain any
malicious data. The paper shows even after removal of the malicious apps from App Store the user can spread the
app through third party developer signed certificates. It also exposes the loopholes in the Fairplay DRM protocol
which is used to deliver malicious apps remotely to the iOS device and also steal data.

The loophole found is that iTunes can sync apps in its library to iOS devices through USB or Wifi Syncing even if the
devices are bound to different Apple IDs. The Man In The Middle Attack works using this principle to deliver
malicious apps. Once the iOS device is connected to the compromised computer, the device generates an
authorization file and corresponding signature file. Upon receiving the files the victims computer sends the
response to the attackers computer remotely for the authorization response file and its corresponding signature
file . The remote attackers pc sends the authorization response which is uploaded to the device by the victims pc.
This enables the user to install the malicious apps without causing any DRM violation. The attacker can also

install provisional profile into the device remotely and this enables the attacker to install/uninstall apps remotely.
The attacker can replace the apps with malicious apps which look and feel the same to steal the users data.

The paper also calculates the number of devices that can be affected by connecting to compromised computers

by analyzing the DNS query datasets of two large ISPs and calculating the number of iOS devices which are
connected to the compromised Windows iTunes. The analysis shows that out of the 473,506 infected CIDs 112,223
CIDs which is 23% devices are vulnerable to attack. The paper also presents on how the Apple can improve the
analysis of the apps and how to control the Man In The Middle attacks to protect sensitive data

\sz//
. . NV
Paper Discussion

Sharani Sankaran
CSC 6991 Advanced Computer Security

This paper mainly describes that the iOS Apple has increase attention from attackers due to its
popularity and the device provisioning process and in-file storage was mainly installed so that a
compromised computer may install an apple signed malicious app on a connected iOS device.

In this paper It mainly challenges the common belief that the Apple App Store is the sole
distributor of iOS apps. Instead of relying on tricking a user into downloading apps from the App
Store, attackers can now push copies of their app onto a victim’s device.

Second, this expolit challenges the common belief that the installation of iOS apps must be
approved by the user. Attackers can surreptitiously install any app they downloaded onto victim’s
device

we mainly analyze DNS queries generated from more than half a million anonymized IP addresses
in known botnets.

This paper also determines measurement about how many devices may suffer from this kind of
attack by analysis of records of DNS request and network traffic.by analyzing DNS queries
generated from more than half a million IP addresses in known botnets, we measured that on
average, 23% of bots are likely to have USB connections to iOS devices, potentially leading to a
large scale infection.

\sz//
. . NV
Paper Discussion

Lucas Copi

CSC 6991

19 October 2015
iOS Security

The paper On the Feasibility of Large-Scale Infections of iOS Devices discusses the ability of
attackers to bypass Apple’s app authorization methods and infect iOS devices through wireless sync
or through a USB connection to iTunes. The researchers discovered a vulnerability in the iTunes
syncing mechanism that allows attackers to bypass DMR checks and carry out man in the middle
attacks. Researchers also found a vulnerability allowing iOS devices to be provisioned for
development through USB connections. This allows attackers to replace legitimate apps with
malicious third-party apps.

The paper demonstrates the capability of wide spread attacks against iOS devices by collecting data
about the number of iTunes purchases on Window’s machines and then making assumption about
the number of iOS devices tied to these accounts. Once the paper demonstrates the feasibility of
large scale attacks, it goes into detail on the methods used to carry out the three main attacks in
the paper: apple-signed malicious attacks, delivering third-party malicious apps, and stealing

private user data through these vulnerabilities.

\sz//
. . NV
Paper Discussion

Hitakshi Annayya

Paper Summary of On the Feasibility of Large-Scale Infections of iOS Devices Tielei Wang, Yeongjin
Jang, Yizheng Chen, Simon Chung, Billy Lau, and Wenke Lee, Georgia Institute of Technology

Because of the advanced iOS’s security architecture, there are many flaws in design, iTunes syncing
process is slow etc. When a compromised computer is connected to iOS device, simply we can
install Apple-signed malicious apps and attack and steal data from Facebook, Gmail apps cookies.
After analyzing from DNS queries, we got to know 23% of bot IP address has connected to iOS
devices and thus making large scale infection feasible.

Despite the advanced techniques i.e powerful revocation capabilities, mandatory code signing
mechanism, the Digital Rights Management (DRM) technology which are integrated by iOS devices,
infecting a large number of non-jailbroken iOS devices through botnets is feasible.

The main contributions of author’s work are discover a design flaw in the iTunes syncing process,
and present a Man-in-the-Middle attack that enables attackers to run any app downloaded by their
Apple ID on iOS devices, second, the security implications of the stealthy provisioning process and
insecure credential storage and finally a large scale infection of iOS devices is a realistic threat and
we are the first to show quantitative measurement results.

Later the author’s discusses on the methodology and datasets we use to determine a lower bound
of the coexistence of iOS devices, App Store purchases made from Windows iTunes, and
compromised Windows machines in home networks, with a goal to quantitatively show that a large
number of users are likely to connect iOS devices to infected personal computers. Finally, 23% of
bots are likely to have USB connections to iOS devices, potentially leading to a large scale infection.

K\sr\(/ﬁ

I0S papers in CCS'15

* Cracking App Isolation on Apple:
Unauthorized Cross-App Resource Access on
MAC OS X and iOS

Luyi Xing (Indiana Univ. Bloomington); Xiaolong Bai (Indiana Univ. Bloomington &
Tsinghua Univ.); Tongxin Li (Peking Univ.); XiaoFeng Wang (Indiana Univ.
Bloomington); Kai Chen (Indiana Univ. Bloomington & Chinese Academy of
Sciences); Xiaojing Liao (Georgia Institute of Technology); Shi-Min Hu (Tsinghua
Univ.); Xinhui Han (Peking Univ.)

* jRiS: Vetting Private API Abuse in iOS
Applications

Zhui Deng (Purdue Univ.); Brendan Saltaformaggio (Purdue Univ.); Xiangyu Zhang (Purdue Univ.);
Dongyan Xu (Purdue Univ.)

K\sr\(/ﬁ

Reminders

* Proposal Revision Due on Wednesday, Oct. 21.

* Paper Summaries

Wayne State University CSC 6991 Advanced Computer Security 8

