Automatic Rendering of Forensic Information
from Memory Images via Application Logic
Reuse

Brendan Saltaformaggio, ZhongshuGu, Xiangyu
Zhang, and Dongyan Xu

Presented By

Sharani Sankaran

Memory Forensics

» Digital investigation based on analysis of non-volatile storage.
» Loss of live evidence stored 1n system RAM

» Information stored in RAM: executing processes open

network connections volatile IPC data OS and application data
structure

\

110100000101010
1111010010111000
110100101001010
10001001001111
\O 000100100 /

How It works

» It mainly capture an image of the suspect machine's
volatile memory.

» The hardware and software based memory acquisition
tools that are minimally invasive.

» It analyses the resulting memory 1image using memory
analysis tools.

» The main aim is to recreate the system's previously
observable state based on the memory 1image.

State Of Art Memory

Signature based Scanning:

» The data structure signature is mainly derived by
analyzing program binaries.

» The signature 1s used to scan memory 1mages and
identify the instances of data structures.

» It also present contents of 1dentified instances to forensic
investigators as potential evidence.

» It mainly finds raw data structure
instances 1n memory image.

» Thus understanding the content
of these data structures 1s extremely
difficult or impossible.

r

Refriter ¢ OxfSelcd |

stdiistring pdfVezsion

int -ength =}

chart § = (xefeéed "1.4"
f

uinl* sLesanBads = 0x0
int, atreamfndsler = 0
Objsctitreant objsty = Ox(
kool useknerypt = 0

hool encryp.ed = 0

ChangedStorage |

stdimapek, V> Mapping

f

—

1nt num
int qen = {
I

ObjectEntry* V - Oxtbfdol

\!

ObjectStorage @ Oxfef710 |
const & :Ref K
int num = §
int qen = 0
|
Oojcctbntry* V - dnfcbBdl

\ y,

!

!

ObjnctEntry & OxfbEdh0 |
Object* object = Cxdd03al
|

\,

[
ObjcctBntry @ OxfobB4 |
hject objecs = Oxfeefold

_ J

!

'

Object @ Oxdd03al |
Objlype = objStrean
union |

streamt stream = Oxfcedab

Object 0 Cxfeefh (

(bjlype = objbict

union |

ezt dlet = Oxtedotd

i J

-

!

Strean @ Oxfeedad |
volat wpty = Ox7L3140
wnt ref =]

(‘ict § Oxtoddlt = |

XRaf* xrcf = Oxfhbadl
DictEntry* entries =Dufeeffd
int aize = 8

it length = 1

it ref - .

\ J

Content Reverse En

ineering challenge

(a) Signature-based scanner output.

\
! PDFodIt - 50_0xf5e7c0.pdf (on se2)
ALy g 1 l Hle Edkt Yew Bage Tt tiep
[\ | §
I [nsoccssanin ¢ tursiicn | i § terid | (C1-F ‘_,lalﬁqd’ \ _:J_Alm\jr‘ 60 ‘J OAA! I; 'I
war e AL e | g - i - -
AT 4 - aOToM L4 e R .\‘ »’B'”“ I k‘JTmn-Rmm :HIO j“"l”“ ol 1 0» J
; [P 15 goa = b | Revisions [Revaion: 0 (593273 bytes) -|
P ; ; -
s = Shjeetnitiyt ¥ - bathiud Cujattatiy” ¥ = Qutentie
LIt " S - G
J l
[} \ \ l J
il wadpted = 0 1]
Chlgeistonnge | (
Cujnttatiy § Garaced | Shjetnity | dutd i |
Lol ORJNLT Whiet = Beddtlat CUjeont Gajeit = Dutoorsd
) —
|]
|
! S ol N M] 3 N + :
L)t ! DSCRETE: Automatic Rendering of Forensic Information from Memory
((i oot | e 3\ Images via Application Logic Reuse
Uiy =)T ShiType = Gajsiat
s | e |
Bt dbinie = Sateeld BAeRT dlot - Buteansd
|)
l '
\ \) Abstract in a memory image via signature-based scanning. Cor
reatly, these signatures are either value-invanant based
‘ State-of the-ant memory forensics involves recovenng [1,3,4.9,21, 231 where data siructure feds are expected
l 34.9.21.2 0 cture fiel epec
[stionn ¢ butonat ¢ — AL JT ‘I":‘ “"{1‘"‘: l”'"“:h;‘ e\ "".‘"h:"‘ ’:"“{" URRE 1o have known value palterns, or structural-invariant
- e il e Hghatufe-ised beute force scanniag NOTRONER TIAIY oo 6,16, 17,241, which relies on points-to invariants
- Gk et - Y extsting apgeeaches require the avallsbibty and a deep between dats strectures, In both cases, data structure sig-
e ot -t understanding of data stracture defaitions in order to in- satanes mli Iix;l P-r. derived by ;";h,l'l;l'"_ cornes m""]
4 e b COrrespond-
L' terpeet the scanning resubts. We observe however that ng reograms. Then the 'r. b -.w I b dlI)
human nsers inchadine forensie investieatars petahhich . f I‘"" - s “i s i -
lofl4 X 10.5613 y: 19.3631 cm
_ J [4

(b) DSCRETE-based scanner output.

DISCRETE WORKFLOW

\u\u
Scanner

Dynamic Data 7.5, Data Candidate Candidate Selected
mm:g"“ Dependence [| identfcaton cmm Testng Candidate
‘ Gaph . a

p—

Content Reverse Engineering

*Application that defined the data structure contains printing/
rendering logic for it too.

e[_et’s call this function as P

*The P function should take asinput the raw 1n memory data
structure format 1t or process it to a human readable

understandable PDF file

Program Code
struct pdf* my pdf;

my pdf = load pdf file (..);
main loop (my pdf); // User edits PDF
save pdf file (my pdf) ;

exit (0) ;

P Function
save pdf file(struct pdf* ptr)
{

char* buf = format pdf (ptr) ;
fwrite (buft, ..);

P Function
save pdf file(struct pdf* ptr)

{

char* buf = for

fwrite (buf, ..);
}

(ptr);

»DSCRETE reuse P to build reusing the 4 h
o , , 110100000101010
existing data structure interpretation and 1111010010111000
binary a scanner+renderer tool. 110100101001010
0100010010011

»Invalid input will mainly crash the
function P.

DSCRETE Binary to Scanner Renderer

» The investigators recover the binary from the suspects
computer .

» DSCRETE then builds a scanner+renderer tool in 2 steps.

» Thus the tool can be reused 1n all future investigations of that
application

Identitying Functional Closure

» It mainly execute the binary from the suspect’s
computer .

» The slicing techniques find printing/rendering
component.

» Select all the output functions that emit evidence.

» DSCRETE saves a memory snapshot during output
function

Finding the Scanner’s Entry Point

» DSCRETE finds candidates for the entry point.
» Candidates must take a heap pointer as input.

» All these selected output/rendering functions must
depend on 1t.

» It mainly uses the technique of Cross state execution to
find the correct candidates.

Program Code
struct pdf* my pdf;

my pdf = load pdf file(..);
main_loop (my pdf); // User edits PDF
save pdf file(my pdf);

Begin Cross-State Execution!

1.Map in memory snapshot
2.Swap my pdf pointer

Memory Scanner Effectiveness

» A correct candidate will output the PDF.

» It mainly presents each offset in suspect’s memory
image to P and reports natural application output as
evidence.

» This tool can be used 1n all future investigations.

P function identification effectiveness

Forensically Interesting ~ Size B

Application F Data (bytes) p%e #C #0 #P
CenterIM SSL_write Username & Password 336 S 46 1 |
convert furite Output Image Content 81902 9% 18 T 2
gnome-paint gdk_pixbuf_save Image Content 670900 1% 18 2 2
gnome-screenshot gdk_pixbuf_save_to_stream Screenshot Content 1139791 1% 5 4 3
oThumb gtk_window_set_title File Info Window Title 85 1% 102 4 2
© gdk_pixbuf_save_to_bufferv Image File Content 20360 1% 10 3 3
Nginx write HTTP Access Log 181 S 25 1 1
PDFedit fwrite, fputc Edited PDF Content 30416 1% 46 6 3
. fputs Database Query Results 19 2% 4 1 1
SQLited Shell ¢t Database Op. Log 38 % 175 1
top putp Process Data 132 10% 1 [|
Xfig fprintf Figure Content 1001 1% 9 3 3

Normalized size of P vs. entire binary
code

25.0%

N
-
o
>~

S S

20.0%F

15.0%

% of Subject Application Text

7777777

10.0%¢
5.9%
5.0%" 3 _Sq, 40% N\
1.0% o 12% 1.8% 1.0%
0.0% 1% [\ 04% N N NN .
' el 0 o S ? K X K <
gl (B S g (0T el T AN (6 T (6 o
N N © N \ V- W\ X © o w7
o e oV o° 29 N Qv o «e o -
© O g® * e & @ e 1
‘\0‘\ g(\ ‘\Q\(\
o8
o€
e
@
o
Q(\

Conclusion

» This has 1dentified the main problem content Reverse
Engineering problem in forensics.

» DSCRETE leverages binary logic reuse toautomatically
locate data structures in memory 1images and reverse
engineer content

» They are highly effective in recovering many forms of
digital evidence

K\sr\(/ﬁ

DSCRETE: Automatic Rendering of
Forensic Information from Memory
Images via Application Logic Reuse.

Brendan Saltaformaggio, Zhongshu Gu, Xiangyu
Zhang, and Dongyan Xu. In UsenixSecurity'14

\sz//
. . NV
Paper Discussion

Zhenyu Ning
CSC 6991 — Advanced Computer System Security

In contrast with the state-of-the-art memory forensics, this paper presents a new approach to achieve memory
forensics without reverse engineering. The most amazing part of the new system, DSCRETE, is that it output the
display of the target data structure instead of just raw bytes of it.

To achieve this, DSCRETE try to run the target binary application in the same environment with the target machine
at the very beginning and generate a memory image, together with an instruction record, after creating enough
target data structure and outputting the data structure. Then through some static analysis mechanism, it found
some candidates of closure points, which may be the beginning of editing a target data structure. After that, the
binary application is re-executed. When the execution reaches a candidate, a sub process is forked and pointer to
the target data structure is then modified to point to some old data which is mapped from the memory image
generated in the first execution. With the result of execution after modify the pointer, DSCRETE then briefly judge
whether a candidate is a real closure points. After it gets some real closure points, the binary application is
executed for the third time in which closure points and sub processes are used to find all potential target data
structures in the memory dump and also show the display of the data structure directly to investigator.

The evaluation shows that DSCRETE can show images, pdfs, files and some other complex data structures
effectively, but has a bad performance when facing some trivial data structure. It is a pity that DSCRETE is not
applicable to applications written in interpreted language like Java. But notice that we can reverse Java application
much easily than application written in other language. If mechanism of DSCRETE can be used to Java by leverage
reverse engineering, | guess it is also a good way to analysis memory in Android application.

\sz//
. . NV
Paper Discussion

Lucas Copi

CSC 6991

14 October 2015
Memory Forensics

The paper DSCRETE: Automatic Rendering of Forensic Information from Memory Images via
Application Logic Reuse discusses a new method for forensically retrieving files from a from a
systems’ memory image using DSCRETE. Traditional forensics utilizes signature based scanning to
uncover data structures in memory. However, many data objects in memory include application
specific encoding, making it difficult for investigators to render the data in a meaningful way. The
DSCRETE system both interprets and renders data structures found in memory to present the data
in @ human readable format.

DSCRETE is based on the assumption that data structures are stored with rendering logic in the
original application binary. This assumption allows DSCRETE to isolate data structure printing
functionality in the application binary. This process requires tracing the subject applications
dynamic data dependences and locating the closure point for the rendering function. Once the data
structure rendering function has been fully identified, DSCRETE can build a scanning+rendering tool
from the subject binary.

DSCRETE was implemented and tested against a Ubuntu desktop ‘suspect’ machine. In the case
studies, DSCRETE performed at expectations as was able to uncover and render valid data structure
instances with 100% accuracy for most cases. Additionally, DSCRETE was able to represent several
key types of evidence that would be nearly impossible to reconstruct with traditional memory
forensic systems.

\sz//
. . NV
Paper Discussion

Hitakshi Annayya

In old days memory forensics used to investigating by signature based scanning of memory images
to uncover data structure -- Reverse Engineering. The disadvantage of this method is not be able to
interpret the content of data structure fields. The paper presents new method called DSCRETE data
structure content reverse engineering technique, which is a system that enables automatic
interpretation and rendering of inmemory data structure contents. DSCRETE is able to recover a
variety of application data — e.g., images, figures, screenshots, user accounts, and formatted files
and messages — with high accuracy.

The key idea behind DSCRETE is to identify and reuse such interpretation and rendering logic in a
binary program without source code to create a “scanner+renderer” tool.

Assumptions made for DSCRETE workflow: first - DSCRETEbased memory the subject binary can be
executed. Second - the OS kernel’s paging data structures in the subject memory image are intact.
Many phases completes the design of DSCRETE- Dynamic data dependency tracing (a data
dependence graph is generated using the trace gathered during dynamic instrumentation.), next
identifying functional closure, to find scanners entry point, and finally memory image scanning.

K\sr\(/ﬁ

Reminders

* Next class: Android Security
* Proposal revision

 Paper summary is required when presenting

